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ABSTRACT

In this article, we summarize the progress made in lung 
cancer, mesothelioma, and thymic epithelial malignancy 
during the period 2005–2025. We enlisted multidisciplinary 
thoracic oncologic experts to tackle this task. The main focus 
of the article concerns how basic science with translational 
impact has improved the diagnosis, prognosis, and therapy 
of these cancers. During the past 20 years, we have come to 
the realization that “lung cancer” is a name that encompasses 
tumors with vast histologic, immune, and genomic differ-
ences that in turn influence prognosis and response to ther-
apy. For example, programmed death-ligand 1 levels are 
being used as an immune signature which guides the use of 
immunotherapy. There is an 85% higher risk for developing 
lung cancer among first-degree relatives of patients with lung 
cancer. Accordingly, an increasing number of lung cancers are 
being identified in carriers of predisposing germline patho-
genic inactivating mutations, suggesting that screening pro-
grams for early lung cancer detection may benefit family 
members. Underscoring the role of genetics, and the impor-
tance of germline testing, a different variant of mesothelioma 
has been identified developing in carriers of inactivating 
heterozygous germline mutations of BAP1 and of other tumor 
suppressor genes, including a new variant of mesothelioma 
caused by fusion genes. These variants of mesothelioma are 
characterized by specific histologic and molecular genetic 
alterations. These patients benefit from screening programs 
as they are at risk of multiple malignancies, their tumors are 
usually much less aggressive, and they are more responsive to 
therapy compared with sporadic, asbestos-induced meso-
theliomas. Thus, the tailored therapeutic approach that is 
described here for lung cancer may extend to patients with 
mesothelioma, rather than the previous “one therapy fits all” 
approach. Progress in the rare thymic epithelial tumors has 
been less marked; however, recent insights into the biology of

thymic tumors have resulted in the development of clinically 
relevant interventions.

© 2025 International Association for the Study of Lung 
Cancer. Published by Elsevier Inc. All rights are reserved, 
including those for text and data mining, AI training, and 
similar technologies.

Keywords: Genetic predisposition; Lung cancer; Mesotheli-
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Introduction
During the past 20 years, medical research has led to 

a significant improvement in both prevention and 
therapy for thoracic malignancies. To summarize all of 
these landmark contributions by innumerable scientists 
and clinicians all over the world is, in essence, an 
impossible task, and some initiatives may be absent, for 
which we apologize but in no way consider less 
important. The point is really that the International 
Association for the Study of Lung Cancer (IASLC) has 
been instrumental in helping us move forward with 
thoracic oncology and with either presenting these ac-
complishments in meetings or publishing in the Journal 
of Thoracic Oncology, among other high-profile journals. 
This manuscript has attempted to divide this evolution 
into discrete sections, but we all know that the lines are 
blurred with that type of segmentation.

In the past two decades, lung cancer (LC) care has been 
transformed by initiatives and innovations that span pre-
vention, diagnostics, and therapy. Furthermore, both glob-
ally and in the United States, cigarette smoking has 
markedly declined. Worldwide, the WHO’s most recent 
trend report reveals a sustained fall in adult tobacco
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use since 2000, 1 and in the United States, the adult 
smoking rate fell from 20.9% in 2005 to 11.5% to 
below 11.5% in 2022. 2

Population-level early LC detection became an estab-
lished practice using low-dose computed tomography 
(LDCT) screening: the U.S. National Lung Screening Trial 
demonstrated a 20% reduction in LC mortality versus 
chest radiography, establishing CT screening as a life-
saving intervention, 3 later corroborated by Europe’s 
NELSON trial using volume CT and nodule growth rate 
assessment. 4 These trials resulted in national and inter-
national screening guidelines, defining eligibility criteria 
and shifting stage at diagnosis toward curability. 

Concurrently, precision oncology personalized the 
treatment of NSCLC with international guidelines 
directing the use of routine molecular profiling with tu-
mor sequencing. 5,6 Targeted therapies using highly active 
oral therapies for oncogenic drivers, such as EGFR, ALK, 
ROS1, BRAF, MET exon 14 skipping, RET, NTRK, HER2, 
and KRAS G12C, have improved both survival and quality 
of life. 7 The integration of liquid biopsy (cell-free DNA 
[cfDNA]) has further accelerated care by providing rapid, 
minimally invasive genotyping at diagnosis and pro-
gression; Food and Drug Administration (FDA)–approved 
assays and trial data (i.e., AURA3 8 ) demonstrated strong 
concordance with tissue testing and actionable guid-
ance—particularly for resistance mutations such as EGFR 
T790M—and led to improved outcomes as adjuvant 
therapy for resected NSCLC. 9

Immuno-oncology has been equally transformative. 
In advanced NSCLC, programmed cell death protein 1 
(PD-1)/programmed death-ligand 1 (PD-L1) inhibitors 
displaced chemotherapy as first-line therapy for 
biomarker-selected patients (e.g., pembrolizumab in 
PD-L1 ≥ 50%) and improved survival after platinum 

failure (e.g., nivolumab versus docetaxel). 10,11 Immune 
checkpoint blockade then moved to combined therapy: 
consolidation durvalumab after chemoradiation for 
unresectable stage III disease (PACIFIC) significantly 
prolonged progression-free survival (PFS) and overall 
survival (OS) and became a new standard of care, a 
benefit now reproduced in real-world cohorts. 12 In 
resectable disease, neoadjuvant chemoimmunotherapy 
(CheckMate-816) increased pathologic complete 
response and event-free survival (EFS). 13

For surgery, limited resection of stage I LC has 
become a standard of practice, 14 as well as the 
increasing use of robotics for diagnosis 15 and resec-
tion. 16 Radiation oncology advanced in parallel. Stereo-
tactic body radiation therapy (SBRT) matured from an 
experimental technique to a curative modality for 
medically inoperable stage I NSCLC, achieving durable 
local control and favorable survival with limited toxicity, 
thereby expanding curative options beyond surgery. 17

Together, these innovations have redefined LC from 
a uniformly lethal disease to one where earlier detec-
tion, biologically tailored treatment, and durable control 
have become the norm instead of the exception. Figure 1 
reveals a timeline of the main discoveries in LC during 
the past 20 years.

The more rare mesotheliomas and thymic malig-
nancies have found a limited development of novel 
therapies because these are Orphan diseases, and, 
therefore, the rarity of these diseases creates challenges 
in generating preclinical data and conducting clinical 
trials, and industry support has been limited. Progress 
for these rare malignancies has been entirely dependent 
on limited grant funding and donations. On the positive 
side, thanks to the measures taken in the Western 
World in the 80s and 90s to drastically reduce exposure 
to asbestos, during the past 20 years we have found a 
decline in the incidence of mesothelioma in the USA, 
Australia, etc. 35–37 Asbestos remains, however, the main 
cause of pleural mesothelioma (PM). 38 Presently, peri-
toneal mesotheliomas are rarely linked to asbestos 
exposure, 39,40 because these mesotheliomas historically 
developed in patients exposed to high amounts of 
asbestos, exposures that presently are rarely found in 
our society. 35–37 The discovery that a fraction of meso-
theliomas estimated at 12% to 15% caused by genetic 
mutations of BAP1 and of other genes are a different 
and much less aggressive disease compared with 
asbestos-induced mesothelioma is having a major pos-
itive impact in the life of these patients and their fam-
ilies. 41 Instead, there has been limited improvement in 
the therapy of sporadic, often asbestos-induced meso-
thelioma. The addition of bevacizumab to chemo-
therapy 42 improved median survival for epithelioid 
mesothelioma to approximately 18 months. More 
recently, immunotherapy has also improved mesotheli-
oma median survival of a few months mostly in patients 
with the sarcomatoid variant. However, the possible 
benefit of immunotherapy for patients with the epithe-
lioid variant of mesothelioma remains controversial, 
and this issue was debated in two recent articles in JTO. 
We refer the reader to those articles. 43,44 In 2008, Flores 
et al. 45 demonstrated that pleurectomy provided an 
overall better outcome compared with extrapleural 
pneumectomy; this manuscript radically changed the 
surgical approach to mesothelioma worldwide. However, 
in 2011, a phase 3 clinical trial 46 called into question 
whether surgery provided any benefit to patients with 
mesothelioma and a more recent phase 3 clinical trial 
concluded that surgery does more harm than good to 
these patients. 47 These trials have been discussed in 
detail in a recent perspective in JTO by surgeons who are 
in favor and against the use of surgery for this meso-
thelioma, and we refer the readers to this article. 48 The
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Figure 1. Key References for Lung Cancer Timeline (2000–2025).
Screening • National Lung Screening Trial Research Team. N Engl J Med 2011;365:395–409. 18 • de Koning HJ et al. N Engl J 
Med 2020;382:503–513 (NELSON). 4 • USPSTF Recommendation Statement. JAMA 2021;325:962–970. 19 Surgery • McKenna RJ 
Jr. Ann Thorac Surg 2006;81:421–425 (VATS outcomes). 20 • Saji H et al. JCOG0802/WJOG4607L. NEJM 2022;386:1257–1267 
(segmentectomy vs lobectomy) 21 • Cerfolio RJ et.al. J Thorac Cardiovasc Surg 2016 Oct;152(4):991-997 (robotic thoracic 
surgery) 22 • Altorki N et al: N Engl J Med. 2023 Feb 9;388(6):489-498 (wedge and segmentectomy vs lobectomy). 14 Radi-
ation Therapy • Timmerman R et al. JAMA 2010;303:1070–1076 (SBRT in inoperable early-stage). 23 • Chang JY et al. Lancet 
Oncol 2015;16:630–637 (SBRT vs lobectomy pooled). 24 • Antonia SJ et al. N Engl J Med 2017;377:1919–1929 (PACIFIC). 25 • 
Kleber T, et al. International Journal of Radiation Oncology Biology Physics. 2025;123(1):S119. (STARS 10-yr update). 26
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main discoveries in mesothelioma during the first 
quarter of this century are outlined in Table 1.

The incidence of thymic epithelial tumors (TETs) is 
increasing due to early (incidental) detection via imag-
ing and improvements in pathology classification. 64,65 

True regional differences may also contribute to the 
increase. Survival for TETs (especially thymoma) has 
improved modestly in the past couple of decades. 
Several factors likely contribute to these observations 
and include earlier detection, advances in surgical 
techniques resulting in a greater proportion of patients 
achieving a complete surgical resection, and an im-
provement in the management of paraneoplastic auto-
immune diseases. 66 It is hoped that advances in an 
understanding of the biology of these diseases, including 
comprehensive genomic profiling, interrogation of tu-
mor immunology, and correlative findings from recent

studies of tyrosine kinase inhibitors (TKIs) and immu-
notherapy, 67 will result in identification of a larger 
number of druggable targets in the near future. The 
main discoveries in TETs during the first quarter of this 
century are outlined in Figure 2.

Epidemiology
Lung Cancer

LC rates have been declining over time. Changes in 
smoking habits have changed the epidemiology of the 
disease to more females, never smokers, with adeno-
carcinoma. The introduction of LDCT screening has 
shifted stage to earlier, more curable disease. 68 Molec-
ular markers have allowed a more personalized treat-
ment. Immunotherapy has changed the landscape of 
late-stage disease to a more treatable condition. 69

Medical Oncology • Shaw AT et al. N Engl J Med 2013;368:2385–2394 (crizotinib ALK+). 27 • Brahmer J et al. N Engl J Med 
2015;373:123–135 (nivolumab vs docetaxel). 28 • Reck M et al. N Engl J Med 2016;375:1823–1833 (KEYNOTE 024). 10 • Antonia 
SJ et al. N Engl J Med 2017;377:1919–1929 (PACIFIC). 25 • Soria JC et al. N Engl J Med 2018;378:113–125 (FLAURA). 29 • Wu YL 
et al. N Engl J Med 2020;383:1711–1723 (ADAURA). 30 • Forde PM et al. N Engl J Med 2022;386:1973–1985 (CheckMate 816). 13
• Spicer J et al. Lancet 2023;401:1777–1790 (KEYNOTE 671). 31 • Planchard D et al: N Engl J Med. 2023 Nov 23;389(21):1935-
1948 (FLAURA2). 32 Multidisciplinary / Guidelines • NCCN Clinical Practice Guidelines in Oncology: Non Small Cell Lung 
Cancer (Versions 1.2010–2025). 5 • ASTRO/ESTRO SBRT Guidelines. Pract Radiat Oncol 2017;7:295–301. 33 • ESMO Guidelines 
Committee. Ann Oncol. 2025;36(11): 1245-1262. Early and locally advanced non-small-cell lung cancer: ESMO Clinical 
Practice Guidelines for diagnosis, treatment and follow-up. 34

Table 1. Milestones in Mesothelioma Research Timeline (2000–2025)

Year Key Findings/Discoveries References

2001 First evidence that, in some families, susceptibility to mesothelioma is transmitted 
in a Mendelian fashion (autosomal dominant)

Roushdy-Hammady et al. 49

2003 The combination of cisplatin and pemetrexed improves median survival by 11.5 wk Vogelzang et al. 50

2008 Pleurectomy revealed to be superior to extrapleural pneumonectomy Flores et al. 45

2011 Identification of BAP1 as the gene responsible for mesothelioma in some families Testa et al. 51

2015 Elucidation of BAP1 immunohistochemistry and its value in the differential diagnosis 
of mesothelioma. Identification of BAP1 as the most frequent acquired (somatic) 
inactivating mutation in mesothelioma

Nasu et al. 52

2015 Germline BAP1 mutations linked to 7+ y median survival in mesothelioma Baumann et al. 53

2015 NGS analyses reveal the most frequently acquired (somatic) mutations in 
mesothelioma

Guo et al. 54 ; Iacono et al. 55

2016 Identification of the mechanism responsible for somatic BAP1 alterations and why 
NGS misses 50% of them

Yoshikawa et al. 56

2016 First comprehensive genomic analyses of somatic alterations in mesothelioma Bueno et al. 57

2016 Identification of the first fusion gene (ALK) driving the growth of peritoneal 
mesothelioma in an adolescent

Loharamtaweethong et al. 58

2017 Elucidation of key mechanisms of BAP1 tumor-suppressor activity Bononi et al. 59

2021 Identification of a shared pathway of carcinogenesis mediated by HMGB1 caused by 
BAP1 inactivation and/or asbestos

Novelli et al. 60

2021 First clinical trial proposing that immunotherapy benefits patients with 
mesothelioma

Baas et al. 61

2024 BARD1 mutations linked to familial mesothelioma and elucidation of the underlying 
mechanisms

Novelli et al. 62

2024 Randomized clinical trial revealing that surgery for mesothelioma does not help and 
may harm patients

Lim E et al. 47

2025 Demonstration that mesothelioma in carriers of germline BAP1 mutations is a 
different, much less aggressive disease than asbestos-induced mesothelioma and 
that these patients benefit from screening programs for early cancer detection

Carbone et al, 41 ; Xu et al. 63

NGS, next-generation sequencing.
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B

Figure 2. (A) Basic science knowledge of TETs. Recent advances in unraveling the cellular, genomic, and immunologic 
composition of TETs have the potential to drive clinical applications related to diagnosis and treatment. Genomic aberra-
tions and the cell-of-origin of TET WHO subtypes are outlined. Interactions between the malignant epithelial cells and 
resident immune cells need further investigation. Knowledge of these interactions has the potential to contribute to the 
understanding of thymoma-associated autoimmune diseases and facilitate the development of TET-directed therapies. (B) 
Evolution of systemic therapy for TETs. A timeline of clinical trials that have influenced the medical management of 
advanced thymoma and thymic carcinoma during the past 20 years. Purple boxes include recommendations for first-line 
therapy. Pink boxes include recommendations for subsequent systemic therapy. CP, carboplatin plus paclitaxel; TET, 
thymic epithelial tumor; † indicated for thymoma if tumor uptake is observed on an octreotide scan or a dotatate positron 
emission tomography scan; * indicated for thymic carcinoma.
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Lung-sparing surgery has decreased complications and 
expanded the number of patients candidates for surgery 
in early-stage disease to include those with comorbid-
ities and high body mass index.

Mesothelioma
Mesothelioma remains a rare cancer globally, 

ranking 32nd in incidence and 26th in mortality (GLO-
BOCAN 2022 summary data) 70,71 ; rates reveal a modest 
decline in the past 30 years in some high-income 
countries, reflecting reduced asbestos exposure, but 
global rates stay significant due to long latency and 
continued asbestos exposure in lower-income settings. 
Past history of clearly documented asbestos occupa-
tional exposure is less frequently observed in high-
income countries, and many mesothelioma cases 
develop in patients with exposures that are difficult to 
identify and detect. 36 An increase in mesothelioma in 
females might be indicative of an increased environ-
mental exposure to mineral fibers, past history of radi-
ation therapy, underlying genetic causes, etc. (reviewed 
in Carbone et al. 38 ). Familial cases of mesothelioma 
developing in carriers of inactivating germline muta-
tions of BAP1 and of other tumor suppressor genes, as 
well as those mesothelioma—mostly peritoneal meso-
theliomas in young women—caused by gene fusions, 
present profound biologic, histologic, and clinical dif-
ferences that require a tailored clinical approach.

Thymic Epithelial Tumors
We observe an increase in the incidence of TETs over 

time, especially in the rates of thymic carcinoma. The 
proportion of TETs diagnosed at early stages has also 
increased over time, and it has been accompanied by an 
improvement in survival. Improvements in the histo-
logic and molecular aspects of these cancers, standard-
ization of nomenclature, staging, and advancements in 
surgery, radiation therapy, and the availability of a 
greater number of systemic therapies, including the 
application of immunotherapy for thymic carcinomas, 
together contributed to an improvement in survival. 72

Lung Cancer
The Environment and Lung Cancer

At the 20th anniversary of the Journal of Thoracic 
Oncology, there is certainty as to the centrality of the 
environment in causing LC. The dominance of environ-
mental factors in causing LC reflects the lung’s interface 
with the atmosphere; its surface area of 70 square 
meters is bathed with contaminants from the inhalation 
of approximately 10,000 L of air daily. Exposures to 
toxins, and carcinogens specifically, even if present at

low concentrations in air, cumulate over time increasing 
cancer risk.

Smoking tobacco products remains the predominant 
cause of LC globally with more than 1 billion tobacco 
smokers worldwide. The mutagenic effects of exposure 
to tobacco smoke are supported by genomic analyses 
that reveal distinct patterns of mutations in LCs in 
smokers compared with never smokers, with cancers in 
smokers having far more mutations. 73

Outdoor air pollution has been confirmed as causing 
LC, not surprisingly because the air pollution mixture 
includes known carcinogens. In 2013, the International 
Agency for Research on Cancer designated ambient air 
pollution and airborne particulate matter as known 
causes of LC. 74 The mutagenic effects of outdoor air 
pollutants are supported by genomic analyses that 
reveal different mutational spectra in LCs among never 
smokers depending on exposure to air pollution. 75 

Radon, through its radioactive progeny, is an estab-
lished cause of LC and a ubiquitous exposure in indoor 
environments. Models for its risk that guide mitigation 
policies have been based on epidemiologic studies of 
radon-exposed underground miners, recently updated 
and replicated in the large international Pooled Uranium 
Miner Analysis (PUMA). 76

In 2025, what is the burden of LC attributable to the 
environment? Figure 3 provides a global estimate of the 
number of LC deaths from various causes, spanning from 

1990 to 2021. The tragic dominance of smoking remains.

Genetic Predisposition of Lung Cancer
Although tobacco smoke or environmental exposures 

are major causes of LC, genetics also play a significant 
role. An extensive, systematic review found an 85% 

higher risk for developing LC among first-degree rela-
tives of patients with LC. 78 Segregation 79–82 and linkage 
analyses 83,84 provided evidence of genes with a large 
effect on risk. Very high risks for LC development are 
associated with rare germline mutations in TP53 85 and 
retinoblastoma (RB1). 86 Evaluation of cases of familial LC 
with EGFR mutations who were resistant to targeted 
therapy identified inherited mutation of the EGFR T790M 
variant. 87 This variant confers a particularly elevated risk 
among nonsmokers. 88 In addition, very rare variants 
increasing LC risk have been reported in HER2, 89 MET 90 

MAST1, 91 and selected surfactant proteins (SFTA, 
SFTC). 92–94 Sequencing in high-risk families identified 
several rare variants with moderate-to-large effect on LC 
risk (Fig. 4), such as PRKN (also known as PARK2), 95,96 

ATM, 97 FGF5, 98 and APOE. 99

Genome-wide association studies (GWAS) using 
population-based cases have detected a large number of 
single-nucleotide polymorphism (SNP) variants that
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contribute to LC risk. The design of these studies is most 
effective in identifying common variants that usually 
convey little risk per variant toward disease risk. 
However, the common SNPs in CHRNA5 and CYP2A6 
having the largest impact on LC risk also influence 
smoking behavior. These variants of CHRNA5 and 
CYP2A6 also impede smoking cessation. Several clinical 
studies and trials revealed that individuals with these 
variants benefit most from pharmacologic interventions 
with varenicline or bupropion compared with in-
dividuals not carrying these variants. 100–104 GWAS 
studies provide novel information about the pathways 
that contribute to LC risk and highlight the roles of

telomere maintenance, 105–109 DNA repair, 97,110 immune 
surveillance, 111–113 and nicotine metabolism. 114–119 

The public health impact of any single variant is 
limited, but their identification can lead to improved 
screening, prevention, and treatment strategies targeted 
specifically at highest risk individuals. 120–124 LDCT for 
LC is among the few screening paradigms for cancer that 
lead to reduced overall mortality along with reduced 
cause-specific mortality. 18 Although LDCT reduces 
overall mortality, the best approach for selecting high-
risk populations who would benefit most from 

screening is an area of ongoing research. 125 Individuals 
who have inherited high-risk variants predisposing to 
LC development are a special population that should be 
targeted for screening to improve the sensitivity of 
cancer detection. Inherited TP53 mutations that cause 
Li-Fraumeni syndrome substantially elevate risks for LC, 
particularly among smokers. 85 Individuals with inheri-
ted RB1 mutations also have greatly increased risks for 
small cell LC 86 However, both inherited RB1 and TP53 
mutations confer susceptibility to ionizing radiation, 
and a targeted prevention strategy using MRI is 
encouraged 126 for TP53 mutation carriers. As noted 
previously, individuals with risk variants that increase 
smoking behavior respond most effectively to pharma-
cologic along with behavioral intervention. Finally, 
polygenic risk scores, which combine information from 
many SNPs, could be used to refine thresholds for 
selecting individuals for LDCT 127 in particular by 
modifying that age at which individuals become eligible 
for screening based on their risk.

Screening for Lung Cancer
From 2005 to 2010, enthusiasm for LDCT was 

tempered by concerns about false positives, over-
diagnosis, and radiation exposure. The field pivoted 
decisively in 2011 with the National Lung Screening 
Trial (NLST), a 53,000-participant U.S. randomized trial 
revealing a 20% reduction in LC mortality (and almost 
equal to 7% reduction in all-cause mortality) with 
annual LDCT compared with chest radiography among 
heavy smokers aged 55 to 74 years with more than or 
equal to 30 pack-years who currently smoked or quit 
within 15 years. 3

That result dramatically changed U.S. policy. In 2013, 
the U.S. Preventive Services Task Force (USPSTF) issued 
a “B” recommendation for annual LDCT in adults aged 
55 to 80 years with more than or equal to 30 pack-years 
who currently smoke or quit within 15 years—explicitly 
mirroring NLST-like risk. 128 Medicare followed with 
national coverage in 2015, aligning payment with the 
USPSTF framework and standardizing shared decision-
making and program requirements. 129 To improve

Figure 3. Number of deaths worldwide from lung cancer by 
risk factor and calendar year, both sexes, all ages, from 1990 
to 2021. 77

Figure 4. Genetic predisposition and architecture of LC. The 
inverse relationship between allelic frequency and effect 
size for LC genetic risk factors. LC, lung cancer.
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consistency and reduce unnecessary follow-up, the 
American College of Radiology introduced Lung-RADS in 
2014 (updated in 2019 and again in 2022) to stan-
dardize reporting and management; the 2022 version 
update refined management for cystic, juxtapleural/ 
airway-centered, and infectious-appearing nodules, 
helping reduce false-positive rates and streamline 
follow-up. 4,130

International confirmation arrived with the Dutch– 
Belgian NELSON trial (reporting in 2020), which 
revealed larger LC mortality reductions—approximately 
24% in men and almost equal to 33% in women—using 
a volume-based LDCT protocol and nodule-management 
strategy. 4 NELSON strengthened external validity 
beyond the United States and informed subsequent 
guideline expansions.

In 2021, the USPSTF broadened eligibility to ages 50 
to 80 years with more than or equal to 20 pack-years 
(still limiting to current smokers or those who quit 
within 15 y). Modeling and evidence syntheses sup-
porting the change emphasized greater mortality 
benefit, improved equity (capturing more women and 
Black adults who tend to develop LC at lower pack-
years), and acceptable harms with contemporary LDCT 
protocols. 19 Medicare expanded coverage accordingly in 
2022—lowering the starting age and pack-years, and 
simplifying several program requirements—facilitating 
nationwide implementation under the new criteria. 131 

Professional-society guidance continued to evolve. In 
November 2023, the American Cancer Society (ACS) 
updated its guideline to recommend annual LDCT for 
adults aged 50 to 80 years with more than or equal to 
20 pack-years who currently or formerly smoked—and 
notably removed the 15-year quit-time limitation, citing 
evidence that elevated risk persists beyond 15 years 
after cessation. 132 Although insurance coverage typi-
cally follows USPSTF, the ACS update signals momentum 

toward broader eligibility.
Despite strong trial evidence of mortality reduction 

from NLST and NELSON, real-world uptake has lagged. 
A nationwide, state-representative analysis of 2022 
BRFSS data found only approximately 18% of eligible 
U.S. adults were up-to-date with screening, with wide 
geographic and demographic disparities—highlighting 
the ongoing need to expand access, optimize shared 
decision-making, and integrate tobacco-cessation ser-
vices within screening programs.

In summary, 2005–2025 saw LDCT screening move 
from controversy to consensus: NLST demonstrated a 
20% mortality reduction 3 ; NELSON reinforced and 
extended benefits 4 ; USPSTF (2013-2021) and CMS 
(2015-2022) progressively expanded and operational-
ized eligibility 2,3,7,8 ; ACR Lung-RADS (2014, 2019, 2022) 
standardized practice 4,130 ; and ACS (2023)

recommended even broader inclusion. 133 The remaining 
challenge is implementation—ensuring that evidence-
based screening reaches those at risk while maintain-
ing high-quality, low-harm programs that continually 
integrate advances in nodule management and risk 
assessment. 4,130 The other challenge is how to use 
screening and other biomarkers in the future for high-
risk nonsmokers defined either as exposed passively 
or in cohorts such as nonsmoking Asian women with 
high incidence of EGFR mutations in their families.

Genomics and Targeted Therapies for Lung 
Cancers

Translating advances in molecular and cell biology to 
treatments has transformed LC care. The discovery of 
oncogenes 134 and recognition of oncogene addiction 135 

as one determinant of cancer growth established protein 
products of those genes as therapeutic targets. 136–138 

Drugs that inhibit the effects of these oncoproteins take 
advantage of this vulnerability of the cancer cell to 
maximize anticancer benefit and minimize effects on 
normal tissues that lead to toxicities. 139 Potentially 
actionable oncogenic drivers have been identified in 64% 

of lung adenocarcinoma specimens. 140 As drug develop-
ment accelerated, molecular pathologists created robust 
genomic testing platforms using DNA and RNA extracted 
from tumors and blood to uncover oncogenic drivers to 
match to targeted treatments. 141,142 The benefits of this 
multiplex approach led to its adoption as a standard of 
care for the simultaneous testing of blood and tumor 
biopsy specimens from all patients with lung adenocar-
cinomas at diagnosis. 5 In the last two decades, this 
worldwide effort identified an array of oncogenic drivers 
in LCs (mutations in EGFR, KRAS, BRAF, MET, and HER2; 
fusions in ALK, RET, ROS1, NTRK, and NRG1; and ampli-
fications in HER2 and MET) with 41 approved targeted 
therapies (Fig. 5).

The LC Mutation Consortium (LCMC) was instru-
mental in the understanding of oncogenic drivers in 
lung adenocarcinoma by operationalizing multi-
institutional, multiplex genotyping linked to treatment 
and outcomes. In its seminal LCMC1 study (14 U.S. sites; 
enrollment 2009–2012), LCMC demonstrated that 
actionable drivers are common—identified in 64% of 
fully genotyped tumors—and that matched targeted 
therapy was associated with longer survival (median 3.5 
versus 2.4 y; adjusted hazard ratio [HR], 0.69). 140 The 
program standardized testing for ten drivers (including 
EGFR, ALK, KRAS, ERBB2/HER2, BRAF) and directly 
connected results to therapy selection and trial enroll-
ment, making routine multiplexed testing practical in 
real-world care. 140 LCMC then broadened its scientific 
scope. A comprehensive multi-institutional analysis
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detailed driver frequencies and co-alterations across 
participating centers, establishing a durable baseline for 
U.S. practice and research. 143 LCMC2 expanded profiling 
(including RET and ROS1) and used the larger data set 
to probe questions beyond prevalence—such as how 
tobacco exposure and TP53 status interact with target-
able drivers—revealing that smoking history and TP53 
mutations modulate clinical behavior among genomi-
cally defined subsets. 144 The consortium also produced 
mutation-specific cohorts that clarified clinicopathologic 
features and outcomes for BRAF-mutant disease 145 

and HER2-mutant adenocarcinoma, 146 helping catalyze

subsequent targeted therapy development and trial 
design. Importantly, LCMC evaluated equity and biology 
together, reporting race-associated differences in driver 
prevalence and outcomes, thereby informing testing and 
access priorities. 147 Finally, LCMC characterized met-
astatic KRAS-mutant adenocarcinoma—historically a 
“nontargetable” group—providing outcomes bench-
marks that later enabled evaluation of KRAS-directed 
strategies. 148 Collectively, LCMC’s contributions— 
prospective, multicenter genomics tied to treatment; 
rigorous driver-specific cohorts; and equity-aware 
analyses—underpinned today’s expectation that 
every advanced lung adenocarcinoma should undergo 
broad molecular testing, with therapy matched to the 
detected driver whenever possible.

In patients with stage IV disease and one of these 
molecular alterations, these targeted agents produce high 
response rates with limited off-target toxicities of cyto-
toxic chemotherapies and immunotherapies. 29,149–153

The EGFR Evolution and Development of TKIs
The EGFR-mutant adenocarcinomas paved the way 

for therapeutic success, and in the past two decades, the 
treatment of EGFR-mutated lung adenocarcinoma has 
evolved from targeted proof-of-concept to an integrated, 
multimodal strategy spanning metastatic, locally advanced, 
and surgically resectable disease. Early development 
(2005–2012) established the predictive value of acti-
vating EGFR mutations (exon 19 deletions and L858R). 
Initial unselected trials yielded modest benefits, but 
subsequent analyses confirmed that mutation-positive 
tumors derived marked benefit from first-generation 
TKIs. The IPASS 154 trial demonstrated gefitinib’s superi-
ority over chemotherapy in mutation-positive disease, 
whereas WJTOG3405, 155 OPTIMAL 156 and EURTAC 157 

established first-line gefitinib or erlotinib as the standard 
of care. Discovery of the T790M mutation as a dominant 
resistance mechanism defined the need for new genera-
tions of inhibitors. 158

Second-generation TKIs (2013–2017), notably afati-
nib and dacomitinib, offered broader EGFR inhibition 
and improved PFS over chemotherapy or gefitinib (LUX-
Lung 3/6, ARCHER 1050), though at a cost of increased 
toxicity. 159,160

Third-generation TKIs (2015–2020) transformed 
management. Osimertinib, 8,161 designed to target both 
sensitizing and T790M mutations with enhanced central 
nervous system (CNS) penetration, improved PFS versus 
chemotherapy in T790M-positive patients (AURA3) 8 

and became the first-line standard after the FLAURA 
trial, 29 which demonstrated superior PFS, OS, and 
CNS control compared with first-generation TKIs.

Figure 5. Two decades of progress discovering oncogenic 
drivers, creating drugs targeting oncoproteins, developing 
accurate and scalable methods to test patient samples for 
the presence of oncogenic drivers, and the validation of 
agent effectiveness in patients with lung adenocarcinomas. 
The years are for the first approval of a drug for that target. 
There is one branch for each target. Each leaf signifies a drug 
approved for that target (branch).
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Combination regimens such as erlotinib plus ramucir-
umab (RELAY) 162 and gefitinib plus platinum– 
pemetrexed (NEJ009) 163 further extended PFS and OS. 

In the 2020s, osimertinib expanded beyond meta-
static disease. The LAURA 164 trial established consoli-
dation osimertinib after chemoradiation as the standard 
for unresectable stage III EGFR-mutant NSCLC, whereas 
FLAURA2 32 confirmed that adding chemotherapy to 
first-line osimertinib improved PFS and emerging OS. 
Recent data from MARIPOSA 165 revealed that ami-
vantamab plus lazertinib surpassed osimertinib in PFS 
and OS, introducing a bispecific antibody–TKI combi-
nation as an alternative first-line option. 

Third-generation TKIs also achieved unmatched intra-
cranial control, addressing the historical challenge of CNS 
metastases. Treatment of uncommon EGFR mutations 
(G719X, L861Q, S768I) favored afatinib, whereas exon 20 
insertions—previously resistant—now respond to ami-
vantamab plus chemotherapy per the PAPILLON study. 166 

EGFR TKI trials have also been performed in surgi-
cally resectable disease. Perioperative integration began 
with adjuvant trials of first-generation TKIs. ADJUVANT-
CTONG1104 167 and EVAN 168,169 revealed improved 
disease-free survival (DFS) and tolerability over 
chemotherapy, though OS advantages were inconsistent. 

Osimertinib revolutionized the adjuvant paradigm. 
The phase 3 ADAURA trial confirmed dramatic DFS 
benefit 30 and, subsequently, an OS advantage 9 with 
adjuvant osimertinib for stage IB to IIIA disease, 
cementing its adoption as the global standard.

Parallel neoadjuvant studies further advanced the 
field. EMERGING-CTONG1103 170 demonstrated higher 
response and nodal downstaging with erlotinib 
compared with chemotherapy in stage IIIA-N2 disease. 
The pivotal NeoADAURA phase 3 trial (ASCO 2025) 171 

revealed that neoadjuvant osimertinib with or without 
chemotherapy achieved superior major pathologic 
response and downstaging versus chemotherapy alone, 
with high resection rates and maturing EFS. Together, 
ADAURA and NeoADAURA define a perioperative con-
tinuum in which osimertinib improves outcomes both 
before and after surgery, integrating molecular targeting 
into curative-intent management.

The problem, however, is that these kinase inhibitors 
are not curative and development of resistance is 
inevitable. Resistance mechanisms are variable, but 
repeated molecular testing reveals acquired targetable 
alterations in tumors of many patients. 172,173 Discovery 
of these resistance alterations led to development of 
new agents targeted to treat patients with tumors re-
fractory to initial treatments. 8 Success in treating LCs 
with oncogenic drivers in individuals with stage IV 
disease prompted the use of targeted agents as neo-
adjuvant therapy. 171 Adjuvant trials after complete

resections revealed superior survival also for ALK fu-
sions. 30,174 In unresectable stage III lung adenocarci-
nomas, concurrent chemotherapy and radiotherapy 
followed by mutation specific kinase inhibitors 
improved survival with several agents. 164,175 These ap-
proaches have revealed that targeted agents used with 
local therapies lengthen survival and increase curability.

Radiation Oncology Advances in NSCLC
The modern era in lung radiation oncology began 

with SBRT for medically inoperable stage I NSCLC. The 
multicenter phase II RTOG 0236 established ablative 
SBRT (54 Gy/3 fractions) as highly effective, reporting 
excellent primary-tumor control with acceptable 
toxicity; long-term updates confirmed durable outcomes 
at 5+ years 17,23,176 Crucially, randomized evidence then 
demonstrated superiority of SBRT over conventionally 
fractionated radiotherapy: the phase III TROG 09.02 
CHISEL trial revealed significantly less local failure and 
better survival with stereotactic ablative radiotherapy 
versus standard radiotherapy in inoperable stage I dis-
ease, cementing SBRT as standard of care. 177

For unresectable stage III NSCLC, three advances sha-
ped practice. First, dose escalation was tested and dis-
proven by RTOG 0617: standard-dose 60 Gy concurrent 
chemoradiation outperformed 74 Gy, with higher doses 
associated with worse survival—redirecting the field to-
ward quality and normal-tissue sparing rather than more 
dose. 178 Longer-term RTOG 0617 analyses linked cardio-
pulmonary exposure to outcomes and, prospectively 
within the trial, intensity-modulated radiotherapy (IMRT) 
reduced severe pneumonitis and lowered heart doses 
versus 3D-CRT, supporting IMRT as the preferred tech-
nique when delivering concurrent chemoradiation. 179 

Second, image-guided target definition matured from 

concept to randomized evidence. The multicenter PET-Plan 
trial demonstrated that FDG-PET–based, reduced target 
volumes during dose-escalated chemoradiation were non-
inferior to conventional volumes and did not increase 
toxicity, validating routine PET-integrated planning and 
selective nodal coverage in stage II to III NSCLC. 180 

Third—and practice-defining—the phase III PACIFIC 
trial established consolidation durvalumab after defini-
tive concurrent chemoradiation as the standard for 
unresectable stage III disease. The original report 
revealed significant improvement in PFS with anti–PD-L1 
therapy versus placebo, 180 followed by a definitive OS 
advantage and sustained 5-year survival benefits on 
extended follow-up. 12,25,181 PACIFIC unified radiation and 
immunotherapy into a peri-radiation standard, making 
optimization of chemoradiation delivery (e.g., heart/lung 
sparing via IMRT and PET-guided fields) clinically pivotal 
as a platform for immunotherapy.
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Together, these trials defined 2005–2025 progress: 
SBRT replaced conventional RT for inoperable stage I 
disease (RTOG 0236; CHISEL); in stage III, the field 
shifted from “more dose” to “better delivery” (RTOG 
0617 + IMRT benefits) while embracing PET-guided 
precision (PET-Plan); and PACIFIC added life-
prolonging consolidation immunotherapy after well-
executed concurrent chemoradiation.

SCLC
The approach to treatment of small cell LC remained 

fairly static, except for technical improvements in radia-
tion delivery and in supportive measures, in the first 
decade of JTO’s existence. Cis- or carboplatin together 
with etoposide was the standard therapy for first-line 
treatment of patients with extensive-stage disease, and 
topotecan was the only drug approved for treatment of 
recurrent disease. Limited stage was approached with 
the same platinum doublet together with thoracic radi-
ation. Prophylactic cranial irradiation was used to reduce 
the risk of primary progression in the brain. The first 
substantial change to the standard of care established in 
the 1990s was the advent of chemoimmunotherapy 
redefining the first-line therapy for patients with 
extensive-stage disease, adding either atezolizumab, 182 

or durvalumab 183 to the chemotherapy doublet and as 
maintenance therapy (Supplementary Fig. 1). Although 
the immune checkpoint blockers extended median sur-
vival only modestly, they led for the first time to durable 
responses—including a small percentage of patients 
evidently cured of metastatic disease: a critical milestone. 
Immunotherapy subsequently changed the standard of 
care improving survival for patients with limited-stage 
disease as well, with maintenance durvalumab after 
definitive chemoradiotherapy. 184 The alkylating agent 
lurbinectedin was granted accelerated FDA approval for 
treatment of recurrent disease, primarily on the basis of 
improved toxicity relative to historical topotecan data, 185 

and the addition of lurbinectedin to maintenance atezo-
lizumab for extensive-stage disease recently demon-
strated an improvement in survival as well. 186 Finally, the 
DLL3-directed T-cell engager tarlatamab was granted 
accelerated approval for treatment of recurrent dis-
ease 187 and has demonstrated a substantial improvement 
in survival over chemotherapy. 188 Multiple new and 
promising agents are now in active clinical development 
for patients with small cell LC, with notably exciting 
initial results found in trials of antibody-drug conjugates 
(ADCs) and other novel classes of targeted therapies.

Immunotherapy Science and Lung Cancer
In the mid-2000s, the idea that immune checkpoint 

inhibition could be effective in thoracic malignancies 
was speculative. 189–191

NSCLC. The first breakthrough came when randomized 
trials revealed PD-1/PD-L1 blockade was superior to 
chemotherapy in previously treated NSCLC. 11,28,192 Soon 
after, strong evidence in the first-line setting among 
patients with high PD-L1 expression established PD-1/ 
PD-L1 inhibitors as a new standard. 10,193,194 Combina-
tion regimens with chemotherapy then extended benefit 
across histologies, regardless of PD-L1 status. 195–198 In 
locally advanced NSCLC, adding PD-L1 blockade after 
completion of chemo-radiotherapy (CT-RT) created a 
new benchmark and paved the way for earlier-stage 
interventions. 25 Later, in resectable disease, neo-
adjuvant chemoimmunotherapy, adjuvant PD-1/PD-L1 
inhibition, and perioperative strategies have consis-
tently improved efficacy end points such as pathologic 
response (e.g., pCR and MPR), DFS, EFS, and OS. 
Although benefit is greater in PD-L1–positive tumors, 
meaningful outcomes are also observed in biomarker-
negative tumors, demonstrating broad applicability 
across wild-type disease. 13,199–201

However, challenges persist. In oncogene-driven 
NSCLC, responses to immune checkpoint inhibitors 
(ICIs) are modest, and in patients without a smoking 
history, the risk of early progression is higher, requiring 
careful patient selection. Advances such as single-cell 
and spatial profiling and circulating tumor DNA 
(ctDNA)–based minimal residual disease (MRD) moni-
toring are refining patient stratification, revealing 
mechanisms of resistance, and guiding rational combi-
nations and treatment duration. 202,203

By 2026, immunotherapy is firmly embedded across 
the NSCLC continuum, with future progress focused on 
integrating it with ADCs, targeted therapies, and next-
generation immunomodulators to optimize outcomes 
in molecularly defined subsets. 204,205

SCLC. In extensive-stage SCLC (ES-SCLC), adding an 
anti–PD-L1 antibody to platinum-based chemotherapy 
has, for the first time in decades, provided a statistically 
significant but modest improvement in OS, establishing 
a new standard of care. Despite this progress, most 
patients relapse quickly, reinforcing the urgency of 
novel approaches including maintenance strategies. 
Bispecific T-cell engagers (BiTEs) have recently 
demonstrated randomized evidence of benefit in the 
second-line setting and are also being explored as 
maintenance therapy after frontline chemo-
immunotherapy to prolong response and delay pro-
gression, including as part of frontline combinations. 

In limited-stage small cell LC (LS-SCLC), anti–PD-L1 
checkpoint inhibition as consolidation after CRT has 
recently demonstrated a clinically meaningful improve-
ment in survival, mirroring the paradigm previously 
established in locally advanced NSCLC.
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By 2026, the focus in SCLC is on extending the 
durability of responses and integrating next-generation 
immunotherapies to improve outcomes in this historically 
aggressive and treatment-resistant disease (Supplementary 
Fig. 2).

Circulating Biomarkers in Lung Cancer
Cell-Free DNA and Other Circulating Biomarkers 
in Lung Cancer

In the last two decades, liquid biopsy (LB) has 
emerged as a powerful tool in thoracic oncology for 
tumor genotyping 206 and promises to revolutionize 
tumor early detection and therapeutic monitoring 
(Supplementary Fig. 3).

Among the potential biomarkers that can be assessed 
through LB, ctDNA has proven to be the most promising. 
Its levels vary according to tumor stage, making the 
clinical utility of ctDNA-based LB highly context 
dependent. 207

In 2006, the first report of detection of EGFR muta-
tion in ctDNA was published. 208 Since that, ctDNA ana-
lyses emerged as a minimally invasive source for 
biomarker testing, moving from EGFR mutation detec-
tion either at baseline or after acquired resistance to an 
alternative or complementary tool for tissue for tumor 
genotyping. 209–212 An important milestone in this field 
was in 2016 when the FDA approved the first plasma-
based companion diagnostic, the Cobas EGFR Mutation 
Test v.2, followed in 2020 by two plasma next-
generation sequencing (NGS) assays, Guardant360 CDx 
and Foundation One Liquid CDx. The NILE study 
revealed the noninferiority of plasma NGS compared 
with tissue testing, paving the way to the plasma-first 
approach. 213 Upfront use of LB in patients with sus-
pected advanced LC before pathologic confirmation was 
then evaluated with the goal of shortening the time to 
treatment start. 214

Many patients with LC relapse even after curative-
intent treatment due to MRD. Detecting MRD, however, 
has been technically challenging because of its low 

abundance. In 2017, tumor-informed assays demon-
strated that ctDNA could predict recurrence early, 215,216 

and a growing body of evidence has demonstrated the 
prognostic value of ctDNA, highlighting its potential role 
in defining patient outcomes. Nevertheless, LB still faces 
sensitivity challenges even in metastatic disease and 
ctDNA-guided prospective clinical trials remain neces-
sary to validate its clinical utility and to define evidence-
based escalation or de-escalation approaches in the 
adjuvant setting. 217

Beyond plasma, different alternative sources for 
ctDNA have been explored, including serum, cerebro-
spinal fluid, urine, pleural effusion, or bronchoalveolar

lavage, albeit further validation studies are still required 
before clinical implementation of these strategies. 218,219 

In addition to ctDNA, other blood components 
including circulating tumor cells, ctRNA, extracellular 
vesicles, or tumor-educated platelets have been actively 
explored for clinical applications, albeit their wide-
spread use for clinical purposes is still far.

Circulating Biomarkers for Lung Cancer Early 
Detection, Diagnosis, and Prognosis

The field of circulating biomarkers for LC early 
detection has evolved considerably in the last two de-
cades, 220 with multiple opportunities to improve clinical 
management before and during screening, 221 on detec-
tion of incidental pulmonary nodules, 222 including at 
and after LC diagnosis (Table 2).

Initial proof-of-concept studies demonstrated that 
cfDNA and tumor-derived molecular alterations can be 
detected in the blood, 223 but progress was limited by 
small sample sizes and suboptimal technologies. 224 The 
advent of LDCT screening provided a paradigm shift, 
expanding the scope from strictly tumor-derived signals 
to include biomarkers reflecting host and immune re-
sponses. 3,225,226 Autoantibodies, 227 circulating micro-
RNAs, 228 and proteins, 229,230 emerged as promising 
tools for risk stratification and early detection in pro-
spective LDCT cohorts (Supplementary Fig. 4).

The EarlyCDT-Lung autoantibody test was the first 
evaluated in a randomized trial, but the design did not 
allow to distinguish biomarker benefit from that of 
LDCT. 231 The BioMILD trial confirmed that blood-based 
microRNA signatures can stratify risk and inform 

follow-up particularly in participants with suspicious 
LDCT findings. 232,233 The INTEGRAL program has 
assembled international resources of prediagnostic 
samples to develop protein panels for both prescreening 
risk stratification and nodule management. 234,235 

Recently, multi-cancer early detection (MCED) tests 
based on the methylome and fragmentome analyses of 
cfDNA have entered large-scale trials. 236,237 Although 
their sensitivity for screening detected early-stage LC 
remains modest, they may hold prognostic utility and 
contribute to multimodal risk models. 238,239 Looking 
ahead, integrating circulating biomarkers with LDCT 
radiomics and clinical risk models in prospective trials 
is expected to refine early detection and personalize 
screening strategies. 240

Evolution of the Diagnosis of Lung Cancer
In the past two decades, molecular pathology has 

fundamentally transformed the understanding, diag-
nosis, and management of lung carcinoma. Early in the 
2000s, LC classification relied primarily on morphology
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and immunohistochemistry (IHC) distinguishing SCLC 
from NSCLC with subtyping into adenocarcinoma, 
squamous cell carcinoma, and large cell carcinoma. The 
role of IHC was essential for refining diagnoses when 
morphology was ambiguous. Specific subtyping for 
the grading of lung adenocarcinoma was published by 
the Pathology Committee of IASLC in 2020. 241 In 
2011, 242,243 the IASLC, American Thoracic Society (ATS), 
and European Respiratory Society (ERS) lung adeno-
carcinoma classification was one of the first evidence-
based guidelines to recommend molecular testing 
since the discovery of EGFR mutations and ALK rear-
rangements that marked a paradigm shift toward 
genotype-driven therapy. These molecular alterations 
clarified oncogenic mechanisms and paved the way to 
targeted treatments that dramatically improved patient 
outcomes. Subsequent discoveries of actionable driver 
mutations, including ROS1, RET, MET exon 14 skipping, 
BRAF V600E, NTRK, HER2, and KRAS G12C, expanded the 
scope of precision medicine and established NGS as the 
cornerstone of modern diagnostic workflows. The 
2015 244 and 2021 245 WHO classifications of thoracic 
tumors formally integrated molecular features into 
diagnostic criteria, emphasizing combined histologic 
and molecular reporting. In parallel, the rise of immu-
notherapy introduced PD-L1 IHC and tumor mutational 
burden as critical predictive biomarkers, broadening the 
pathologist’s role in guiding therapy. 246

More recently, LB using ctDNA has emerged in pa-
tients with advanced LC as a minimally invasive alter-
native or a complementary approach for detecting 
actionable mutations and monitoring resistance mech-
anisms, notably in patients treated by TKIs. 206,247 

Moreover, LB use reveals new open room for assessing 
the MRD in the preoperative LC setting, which could 
lead to postoperative escalation or de-escalation

treatment. 248,249 More recently, new technologies 
demonstrated promising future opportunities for early 
LC detection using LB. 250 Advances in digital pathology, 
multiplex immunofluorescence, and spatial tran-
scriptomics now enable deeper insights into tumor 
heterogeneity and the tumor microenvironment. This is 
an important perspective because recently the propor-
tion of patients with NSCLC diagnosed at an early stage 
is continuously increasing. Recent study revealed the 
role of B-cell receptor (BCR) and T-cell receptor (TCR) 
repertoire analysis demonstrating more BCR/TCR clo-
notypes and increased BCR clonality in tumor than in 
non-neoplastic samples. Five histologic subtypes of 
adenocarcinoma demonstrated that higher histologic 
pattern complexity was associated with higher immune 
infiltration and low TCR clonality in the tumor-proximal 
regions associated with prognostic values in early-stage 
NSCLCs. 251

Collectively, these innovations have redefined lung 
carcinoma as a molecularly heterogeneous disease that 
demands integrated, multidisciplinary testing strategies. 
Molecular pathology today is not limited to diagnostics 
but also plays a crucial role in real-time therapeutic 
decision-making.

Evolution of Surgery for Lung Cancer
From 2005 onward, LC staging underwent two major 

overhauls driven by the IASLC staging project. The 
seventh edition (2009) refined T-size cutoffs and stage 
groupings using a large international database and 
introduced harmonization with a new, precise medias-
tinal lymph node map to reconcile the historical Naruke 
and Mountain-Dresler systems. 252–254 The eighth edi-
tion (implemented globally in 2017; the United States in 
2018) further subdivided T1/T2 by 1-cm increments up

Table 2. Clinical Applications of Circulating Biomarkers for Early Lung Cancer Detection

Time Point Clinical Application

Before initiating LDCT screening Improve risk assessment to better target screening to high-risk individuals; 
increase engagement of eligible but unscreened people

After a negative LDCT scan result Refine risk assessment to allow longer screening intervals for the lowest risk 
individuals

After identification of a nodule on LDCT screening Improve prediction of nodule malignancy to better target invasive diagnostic 
procedures to high-risk nodules

After detection of an incidental pulmonary 
nodule

Improve nodule malignancy prediction to guide diagnostic procedures

After onset of potential lung cancer symptoms Fast-track individuals likely to have lung cancer to appropriate imaging and 
follow-up

During investigations for screen-detected lung 
cancer

Reduce overdiagnosis by identifying indolent tumors; improve diagnostic 
performance of invasive procedures such as bronchoscopy

At diagnosis of lung cancer, before treatment 
initiation

Improve prognostic assessment and guide treatment planning

During follow-up Intercept second primaries
LDCT, low-dose computed tomography.
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to 5 cm, clarified separate tumor nodules/adenocarci-
noma in situ/minimally invasive adenocarcinoma, and 
split M1 into single versus multiple extrathoracic me-
tastases (M1b versus M1c), improving prognostic 
granularity and trial stratification. 255 The ninth edition 
(effective January 1, 2025) introduces additional re-
finements to T/N/M and stage groups to align with 
contemporary outcomes; early summaries emphasize 
more granular N-subclassification and refined M 
categories. 256

Concurrently, preoperative staging integrated 18 F-
FDG PET/CT as standard to reduce futile thoracotomies 
by detecting unsuspected nodal/distant disease and to 
assist radiotherapy planning. 257 The decisive procedural 
shift, however, was the rise of endosonographic needle 
techniques. Between 2007 and 2014, evidence syntheses 
and guidelines moved endobronchial and/or esophageal 
ultrasound–guided needle aspiration (EBUS/EUS-FNA) to 
the frontline for mediastinal assessment in potentially 
operable NSCLC, reserving surgical staging for negative/ 
indeterminate results or specific nodal stations. 257,258 

Contemporary CHEST guidance underscores EBUS-TBNA 
as the initial invasive test given high sensitivity/NPV and 
tissue adequacy for molecular testing—critical in the 
immuno-oncology era. 259

Within the operating room, the following three 
themes dominated: (1) the extent of nodal surgery, (2) 
the move to minimally invasive anatomic resection 
(VATS → uniportal VATS → robotic), and (3) 
parenchyma-sparing resections validated by random-
ized trials.

First, the ACOSOG Z0030 randomized trial revealed 
no OS advantage for routine complete mediastinal 
lymph node dissection versus rigorous systematic 
sampling in clinically N0/selected N1 early stage tu-
mors, supporting a quality-assured sampling strategy 
when preoperative staging is negative. 260 Later analyses 
and meta-analyses continue to debate survival effects in 
broader settings, but most guidelines prioritize 
completeness and nodal-station coverage over “dissec-
tion vs sampling” labels per se. 261

Second, VATS lobectomy—established in the mid-
2000s—consistently reduced pain, complications, and 
length of stay versus thoracotomy, with comparable 
long-term survival in pooled analyses. 262 The technique 
evolved to uniportal VATS in 2010 to 2011, enabled by 
articulating instruments and novel exposure strategies, 
and disseminated widely thereafter. 263,264 Robotic-
assisted thoracic surgery (RATS) expanded in the late 
2010s, offering enhanced dexterity and visualization; 
contemporary comparative studies and meta-analyses 
suggest similar oncologic quality to VATS with differ-
ences in conversion and perioperative profiles that vary 
by center experience. 265,266 Recent randomized-

evidence meta-analyses of VATS versus open lobec-
tomy even suggest an OS advantage for VATS, reflecting 
cumulative gains in technique and perioperative care. 267 

Third—and practice-changing—two modern ran-
domized trials validated sublobar strategies. The Japa-
nese JCOG0802/WJOG4607L trial (≤2 cm peripheral 
cT1a-bN0) found segmentectomy improved OS versus 
lobectomy at the cost of higher local relapse, arguing for 
segmentectomy as standard in this cohort. 21 The North 
American CALGB 140503 (Alliance) trial revealed non-
inferior DFS for sublobar (segmentectomy/wedge, with 
margins and node assessment) versus lobectomy in 
peripheral less than or equal to 2 cm cT1aN0 NSCLC, 
with similar OS, supporting broader parenchyma-
sparing adoption within oncologic principles. 14,268 

Together, these trials cemented anatomic segmentec-
tomy for small peripheral tumors, especially when 
coupled with meticulous margin control and nodal 
evaluation.

Technological adjuncts accelerated precision resec-
tion. Indocyanine-green fluorescence (ICG-FI) 
methods—described in thoracic segmentectomy 269 and 
refined in the 2010s to 2020s—improved delineation of 
intersegmental planes and aided complex segmentec-
tomy planning when combined with 3-D CT re-
constructions and modern localization techniques. 270 

Finally, the modern perioperative paradigm in 
resectable NSCLC was catalyzed by CheckMate-816, 
where neoadjuvant nivolumab plus platinum-doublet 
chemotherapy significantly increased pathologic com-
plete response and improved EFS versus chemotherapy 
and approximately 10% absolute 5-year OS gain, 
establishing durable benefit for neoadjuvant chemo-
IO. 271 Parallel development of perioperative pem-
brolizumab in KEYNOTE-671 demonstrated superior 
EFS and, subsequently, OS benefit when pembrolizumab 
was given both before and after surgery compared with 
neoadjuvant chemotherapy and surgery alone, sup-
porting a “sandwich” strategy across stage II to IIIB 
disease. 31 A third pillar, AEGEAN, revealed that peri-
operative durvalumab (neoadjuvant chemo-IO fol-
lowed by adjuvant durvalumab) significantly improved 
EFS and pathologic complete response 272 with an 
emerging—though not yet definitive—OS signal on 
updated analyses.

Concurrently, adjuvant-only immunotherapy matured. 
IMpower010 established DFS benefit for atezolizumab 
after adjuvant chemotherapy in resected stage II to IIIA 
NSCLC—most pronounced in PD-L1–positive tumors— 

with long-term updates reinforcing durability and refining 
PD-L1–driven expectations. 273 PEARLS/KEYNOTE-091 
demonstrated a DFS advantage for adjuvant pem-
brolizumab in an all-comer population after resection (with 
or without prior adjuvant chemotherapy), broadening
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utility beyond PD-L1–restricted subgroups and revealing 
sustained benefit on later analyses. 200

Mesothelioma
The Environment and Mesothelioma: Asbestos 
Carcinogenesis

Occupational asbestos exposure is strongly associated 
with the development of mesothelioma, LC, laryngeal 
cancer, and other intrathoracic malignancies. 38,274–279 

Advances in understanding the carcinogenic potential of 
asbestos fibers have led to the implementation of policies 
to reduce or ban asbestos use in most of the developed

countries. They also allowed for regulations in areas with 
high environmental exposure to asbestos or other carci-
nogenic mineral fibers (such as erionite) to reduce me-
sothelioma incidence. 280–283 Inhaled asbestos fibers that 
deposit in the pleural space can promote carcinogenesis 
through chronic inflammation, generation of reactive 
oxygen species (ROS) and DNA damage, and ferropto-
sis 284–286 (Fig. 6). The chronic inflammatory processes 
that drive mesothelial cell transformation have been 
directly linked to the action of high mobility group box 1 
(HMGB1) and the NLRP3 inflammasome. 287–289 In 
asbestos-exposed mesothelial cells, HMGB1 translocates 
from the nucleus to the cytoplasm where it induces

Figure 6. Mechanisms of asbestos carcinogenesis. Asbestos exposure induces reactive oxygen species (ROS) production, 
leading to DNA damage and necrosis. Necrotic mesothelial cells release high mobility group box 1 protein (HMGB1) into the 
extracellular space, where it acts as a damage-associated molecular pattern (DAMP). HMGB1 binds to its receptors on 
macrophages and other immune cells, activating the NLRP3 inflammasome and inducing the secretion of proinflammatory 
cytokines, such as TNF-α, IL-1ß, IL-6, and TGF-ß, thereby establishing a chronic inflammatory microenvironment. In parallel, 
HMGB1 engages the receptor for advanced glycation end products (RAGE) on surviving mesothelial cells, activating the 
mTOR–ULK1–Beclin1 signaling cascade to promote autophagy. HMGB1 also directly interacts with Beclin1 in the cytoplasm to 
induce autophagy, supporting mesothelial cell survival under stress conditions. TNF-α, acting through TNF-R1, stimulates 
the NF-κB pathway, further sustaining cell survival. The combination of persistent ROS production, chronic inflammation, 
and enhanced pro-survival signaling promotes mesothelial cell hyperplasia and malignant transformation.
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autophagy by binding to Beclin1 and activates the mTOR 
autophagy pathway by binding to its membrane receptor, 
RAGE. 290 HMGB1 is also released from necrotic meso-
thelial cells, following asbestos exposure, into the extra-
cellular space, where it functions as a damage-associated 
molecular pattern (DAMP), initiating the inflammatory 
response and activating the NLRP3 inflammasome, which 
induce the release of cytokines, such as TNF-α and IL-1ß, 
from macrophages and other surrounding cells. This, in 
turn, activates the NF-κB signaling cascade and survival 
pathways. 287,291–294 The induced chronic inflammatory 
reaction enhances DNA damage in surviving mesothelial 
cells, promoting mesothelial hyperplasia and malignant 
transformation. 295 Moreover, in individuals carrying 
heterozygous germline BAP1 mutations, who are pre-
disposed to the development of mesothelioma, HMGB1 
serves as a key mediator of the gene-environment 
interaction and the increased inflammation and DNA 
damage of cells exposed to asbestos. 60 These findings 
highlight the important role of HMGB1 in asbestos 
carcinogenesis and mesothelioma pathogenesis, offering 
a promising target for therapeutic intervention.

Mesothelioma
Research during the past two decades has elucidated 

the once-enigmatic mechanisms of asbestos—and of 
other mineral fibers—carcinogenesis that has been 
linked mainly to HMGB1. 287 HMGB1 is reviewed in 
Carbone and Yang 296 and in other parts of this article. 
Aspirin and other anti-inflammatory drugs that interfere 
with HMGB1-induced inflammation were found to 
reduce asbestos carcinogenesis in mice, suggesting a 
possible preventive therapeutic strategy. 297 Additional 
experimental approaches to interfere with asbestos 
carcinogenesis have also demonstrated promising re-
sults by targeting the ERK1 and ERK2 pathways. 298 

The past 20 years have also revealed an increasing 
number of manuscripts confirming the relationship be-
tween therapeutic radiation and mesothelioma, which 
usually occur several years after completing radiation 
therapy (reviewed in Carbone et al. 38 ).

Following studies in three Cappadocian Villages 
(Turkey) which revealed that susceptibility to meso-
thelioma was transmitted in a Mendelian fashion, 221 

these researchers identified the first gene, BAP1, which 
when heterozygous mutated in the germline (BAP1 +/− ) 
predisposes carriers to mesothelioma, uveal mela-
nomas, and other cancers whose tumor cell contain 
biallelic BAP1 inactivation, BAP1 − /− , an evidence of 
pathogenicity. 49,51 Note that although BAP1 means 
“BRCA1-associated protein 1,” this is a misnomer, as 
BAP1 does not bind BRCA1; it binds BARD1, a tumor 
suppressor that can bind both BRCA1 and BAP1. 62 Thus,

immunoprecipitations for BRCA1 will bring down both 
BARD1 bound to BRCA1 and BAP1, bound to BARD1, 
which led to the initial confusion. This new hereditary 
medical condition has been named the “BAP1 cancer 
syndrome,” and it is characterized by multiple malig-
nancies that develop approximately 20 years earlier 
than their sporadic counterparts. Mesothelioma is the 
most common malignancy. In-depth studies of mesothe-
lioma developing in BAP1 +/− carriers, including a sur-
gical clinical trial conducted at the U.S. National Cancer 
Institute, revealed that these mesotheliomas have unique 
histologic, biological, and clinical characteristics and 
these tumors have been named low-grade–BAP1-
associated mesotheliomas (L-BAMs). 41,299 L-BAMs are 
characterized by superficial spreading, intrapleural 
growth and minimal invasion, usually limited to the 
submesothelial adipose tissue. Because these lesions 
invade the adipose tissue, they have been diagnosed as 
malignant mesothelioma, and because this is often a tri-
cavitary disease, until very recently, these patients were 
often diagnosed with metastatic mesothelioma and 
treated very aggressively. Instead genetically related 
mesotheliomas are less aggressive, 7 median survival is 
estimated at approximately 7+ years, compared with the 
dismal 6 to 18 months median survival of asbestos-
induced sporadic mesotheliomas. 41,53,300–303 Following 
resection, most patients may have prolonged survival, 
some have been cured and died at old age of other dis-
eases. 41 L-BAM may also be susceptible to immuno-
therapy: the interim analysis of the clinical trial 
NCT04940637 which uses the combination of Niraparib, 
a PARP inhibitor, with Dostarlimab, a PD-1 inhibitor 
revealed a significant benefit in patients with mesothe-
lioma carrying germline BAP1 +/− and BAP1 − /− in the 
tumor cells, compared with a lack of antitumor activity in 
patients with mesothelioma with germline wild-type 
BAP1 +/+ and somatic BAP1 − /− inactivation in the tu-
mor cells. 304

The challenge to researchers in the coming years is 
to discover why carriers of germline BAP1 mutations 
can survive many years with mesotheliomas and other 
cancers.

Additional germline mutations predisposing to me-
sothelioma have been identified lately. 53,62,301,305,306 

Mechanistically, BAP1, BARD1, and other genes that 
cause or predispose to mesothelioma are for the most 
part involved in mechanisms that regulate DNA repair, 
intracellular calcium metabolism, cell death, and for 
BAP1, the stabilization of HIF-1a. 59,62,307,308 The high 
incidence of mesothelioma in germline BAP1 +/− carrier 
mutations may be caused by the regulatory effect of 
BAP1 on HMGB1 cellular localization: loss of BAP1 leads 
to similar effect as asbestos exposure, releasing HMGB1 
from the nucleus to the cytoplasm and extracellularly. 60

January 2026 Advances in Thoracic Oncology 57



Experimental evidence in vitro and in mice suggests that 
patients carrying germline inactivating mutations of 
DNA repair genes are at higher risk of developing me-
sothelioma when exposed to asbestos or to other 
carcinogenic fibers (gene × environment interaction). 
Reviewed in Carbone et al., 300 BAP1 and asbestos 
regulate different mechanisms of cell death. 309 Recent 
experimental studies revealed that co-targeting two 
proteins in the Bcl-2 pathway—which modulates cell 
death—reduces chemotherapy resistance to mesotheli-
oma. 310 This novel approach might benefit all patients, 
regardless of the cause of their mesothelioma.

Mesothelioma Genomics
Genomic analyses of mesothelioma tumor DNA 

revealed that mesotheliomas are characterized by a 
relatively low number of nucleotide level inactivating 
mutations and lack common activating mutations 
(with the exception of certain fusion genes, see sub-
sequent discussion), and by a large number of copy 
number alterations and aneuploidy. 54–57 The most 
frequently somatically mutated genes (i.e., somatic 
mutations are acquired mutations present only in the 
tumor cells, these mutations must be distinguished 
from germline mutations that instead are present in 
all cell types in a given individual), in order of fre-
quency, are BAP1, CDKN2A, and NF2. 54–57 BAP1 is 
somatically biallelic inactivated in 60% to 70% of 
mesotheliomas, and this can be easily detected by IHC 
revealing lack of BAP1 nuclear staining. 52 This stain 
proved very useful to distinguish mesotheliomas— 

BAP1 negative—from an array of reactive benign 
conditions that can mimic mesotheliomas but that 
have positive BAP1 stain. 52

The 3p21 region, in addition of BAP1 mutations, 
often contains inactivating mutations of SETD2, PBRM1, 
and SMARCC1. 239 Because deletions are often not 
contiguous but rather are alternating with DNA seg-
ments having oscillating copy number changes, it ap-
pears likely that chromotripsis 239 triggered by 
chromosome mis-segregation during mitosis leads to 
the vast aneuploidy found in mesothelioma. 56,57,311 The 
presence of specific mutations does not significantly 
seem to affect the prognosis of asbestos-induced me-
sotheliomas. It has been suggested that mesotheliomas 
containing biallelic BAP1 inactivation may have a better 
prognosis (16.8 versus 8.3 mo) compared with those 
containing other types of inactivating mutations as they 
may be more susceptible to therapy. However, germline 
testing was not conducted, and therefore, it is possible 
that patients with L-BAM were included in these trials 
and may have confounded the results. 312

The rare mesotheliomas containing activating fusion 
genes are a different disease compared with asbestos-
induced mesothelioma. The occurrence of this new 

variant of mesothelioma was first reported by a medical 
research team from Thailand carrying an activating ALK 
fusion gene. 58 In 2018, the fusion partners of ALK in 
peritoneal mesothelioma were identified. 313 These 
findings were later confirmed by multiple studies. 314,315 

These mesotheliomas, for the most part peritoneal me-
sotheliomas, occur in the peritoneum of young patients 
(including children) with no evidence of asbestos 
exposure, do not contain BAP1, CDKN2A, or other mu-
tations that are often found in asbestos-induced meso-
theliomas, and respond to therapy. Most of these 
patients experience prolonged survival. 58,313–315

Mesothelioma Biomarkers: Progress in 20 Years
The past two decades have revealed a steady pro-

gression in the search for reliable biomarkers in malignant 
PM (MPM). The effort began in 2005 with osteopontin, 316 

which initially appeared promising but ultimately lacked 
specificity in asbestos-exposed populations. In contrast, 
soluble mesothelin-related peptides (SMRP) 316–318 soon 
became established as the most robust early blood 
biomarker, validated through the MESOMARK assay. 
Around the same time, calretinin was developed as a 
blood-based enzyme-linked immunosorbent assay 
marker, 318 and tumor-based microRNA profiling revealed 
miR-29c* as a strong prognostic factor. 319 Together, these 
discoveries provided the first clinically applicable tools for 
diagnosis and prognosis.

Between 2011 and 2015, the focus shifted to genetics 
and tissue biomarkers. Landmark studies demonstrated 
that BAP1 loss was frequent in sporadic mesotheli-
oma, 52,320 whereas germline BAP1 mutations conferred 
familial risk of developing mesothelioma and other 
cancers. 51,300 Strikingly, carriers with germline muta-
tions demonstrated a sevenfold survival advantage, 53 

findings confirmed by multiple studies, 299,301–303 high-
lighting BAP1 as a powerful, reliable, diagnostic, and 
prognostic marker. 41 Fibulin-3 initially generated 
enthusiasm, 321 but later prospective studies failed to 
confirm its clinical utility. 322 These findings under-
scored the need for rigorous validation and spurred 
exploration of inflammatory mediators, such as
HMGB1. 291,296

From 2016 to 2020, research advanced toward 
clinical integration. Bueno et al. 57 published a compre-
hensive genomic atlas, mapping recurrent mutations, 
fusions, and splicing events, laying the foundation for 
molecular stratification. Circulating hyperacetylated 
HMGB1 was proposed as a highly specific
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biomarker, 291,296 though replication remains ongoing. 
Prospective cohort studies revealed that combining 
calretinin with mesothelin could detect nearly half of 
mesotheliomas up to a year before diagnosis, 323 

whereas multimarker panels achieved area under the 
curves approaching 0.94. 324 These advances established 
the superiority of combined biomarker strategies.

In 2021–2025, the emphasis shifted to real-world 
validation and prognostic modeling. The DIAPHRAGM 
study reaffirmed mesothelin as the clinical benchmark 
and excluded fibulin-3 from further consideration. 322 

Large population studies demonstrated the high speci-
ficity of calretinin and mesothelin but noted renal 
dysfunction as a confounder. 325 Serum calretinin gained 
strong validation, especially when combined with SMRP. 
Meanwhile, molecular prognostic signatures matured: a 
six-gene tissue classifier and a blood panel incorpo-
rating calretinin with MALAT1 and GAS5 326 predicted 
recurrence and survival with high accuracy.

In conclusion, in 20 years, mesothelioma biomarker 
research has progressed from single-analyte discovery 
to multimarker panels and genomic classifiers. Current 
evidence supports combining blood biomarkers with 
tissue and transcriptomic assays to improve early 
detection, diagnostic accuracy, and individualized 
prognostic stratification.

Evolution of the Pathologic Diagnosis of 
Mesothelioma

The pathologic diagnosis of mesothelioma has 
become increasingly multimodal from morphology 
alone to expanded IHC panels followed by targeted 
molecular tests (especially BAP1 IHC and CDKN2A/p16 
FISH or MTAP IHC, NF2/Merlin biomarkers). Emerging 
epigenetic and LB approaches have to be considered. 
These combined approaches improve sensitivity and 
specificity and help resolve difficult cases.

In the WHO third edition (2004), the focus was pri-
marily on diagnosis. 327 There was an established 
recognition of mesothelioma localized/diffuse in three 
subtypes of epithelioid, biphasic, and sarcomatoid. 
Epithelioid the major subtype has an impact on prog-
nosis and treatment (surgery versus nonsurgery in non-
epithelioid subtypes). The sarcomatoid-desmoplastic 
variant was discussed as both a mimic for reactive 
processes (potential misdiagnosis) and in the context of 
its adverse prognosis. Improvements in immunochem-
istry in the past 20 years have reduced misdiagnosis 
from metastatic carcinomas of various sites. 328 The 
adenomatoid tumor and well-differentiated papillary 
mesothelioma (WDPM) were identified as distinct 
pathologic entities. 329 Molecular analyses revealed

common deletions at 3p, 9p, and 22q associated with 
BAP-1, p16, and NF2, respectively. 330–332

In the WHO fourth edition (2015), the criteria for 
redefining the separation between mesothelioma from 
reactive mesothelial proliferations was refined, 333,334 

including reclassifying pleomorphic epithelioid meso-
thelioma (EM) as having a poor prognosis similar to that 
of sarcomatoid mesothelioma (SM). 335–337 The STAT6 
antibody was identified as a reliable marker of solitary 
fibrous tumor 338 the WWTR1/CAMTA1 fusions with the 
specific CAMTA1 antibody to diagnose epithelioid 
hemangioendothelioma 339 and the CTNNB1 gene mu-
tation expressing ß-catenin to diagnose desmoid fibro-
matosis. 340,341 All are morphologically mimics of 
mesothelioma (Supplementary Fig. 5).

Since 2015, the scientific literature 333 has been 
dominated by molecular genetic developments. 57,342–345 

These are discussed elsewhere. BAP1 mutations are 
more common in epithelioid histotype, peritoneal > 
pleural whereas CDKN2A/MTAP and NF2/Merlin alter-
ations are more common in SM. 315,346,347

At least 12% of mesotheliomas occur in carriers of 
pathogenic germline genetic mutations and are associ-
ated with distinct clinicopathologic features. 41,302,348 

These are discussed elsewhere.
The WHO fifth edition (2021) included significant 

modifications 349,350 : (1) The name of “well-differentiated 
papillary mesothelioma” (WDPM) was changed to “well-
differentiated papillary mesothelial tumor” (WDPMT) 
because of its indolent behavior and to steer clear of 
confusion with mesothelioma. 351,352 Most peritoneal 
WDPMT exhibit somatic missense mutations in the 
TRAF7 or missense mutations in the CDC42, so far not 
observed in the pleural location. 353 (2) Mesothelioma in 
situ (MIS) was recognized as a precursor lesion of inva-
sive mesothelioma that can be diagnosed when tumor 
cells have lost BAP-1 and/or MTAP by IHC or have ho-
mozygous deletion (HD) of CDKN2A by FISH. 354–356 A 
new TNM staging AJCC/UICC is in progress. 354,357 (3) The 
prefix “malignant” in localized and diffuse mesothelioma 
was removed. 350 Transitional mesothelioma was reclas-
sified with SM. 358–360 Furthermore, a two-tier, low-grade 
to high-grade mesothelioma tumor grading schema was 
adopted based on nuclear atypia, mitotic activity, and 
necrosis for EM. 349

Since 2021, there is a recognized subset of meso-
thelial neoplasms which are associated with gene fu-
sions encoding aberrant chimeric transcription factors. 
These are disproportionately represented among peri-
toneal tumors, with EM in younger subjects, arising 
independently of asbestos exposure, some have distinct 
pathologic features. These rare mesothelial neoplasms 
are discussed elsewhere.
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Solid papillary mesothelial tumor is a new described 
neoplasm in the female peritoneum with distinct mo-
lecular signature (lacking recurrent BAP1, CDKN2A/B, 
NF2, TP53, LATS2, and SETD22) with a benign clinical 
course. 361

MTAP is a tumor suppressor gene located at the 
telomere side adjacent to CDKN2A on chromosome 
9p21 which is co-deleted in up to 90% of cases with 
CDKN2A HD. 362 CDKN2A HD is a reliable marker of 
malignancy in mesothelial lesions. Immunohistochem-
ical loss of cytoplasmic MTAP expression reveals 74% to 
82% sensitivity and approximately 100% specificity for 
detecting CDKN2A HD, and it is often used as a surro-
gate for CDKN2A deletion when FISH technology is not 
available. 363–365

Advances in Systemic Therapy for Mesothelioma
In 2003, pemetrexed/(cis)platin (P/C) chemotherapy 

was established as the standard first-line treatment for 
patients with PM, based on phase III randomized 
controlled trial (P3RCT), with median OS (mOS) of 12.1 
months. 50 Adding anti-vascular endothelial growth factor 
(VEGF) antibodies, bevacizumab, to P/C resulted in longer 
mOS versus P/C alone in MAPS P3RCT (18.8 versus 16.1 
mo; HR, 0.77). 42 In ATOMIC P3RCT, arginine deprivation 
by addition of pegylated arginine deiminase to P/C led to 
increased mOS versus P/C (9.3 versus 7.7 mo; HR, 0.71) in 
non-epithelioid PM. 366 But these two last strategies have 
not been approved.

Leveraging the host immunity to fight mesothelioma 
is now a standard therapy. Dual immune checkpoint 
inhibition targeting CTLA4 and PD1 with ipilimumab 
and nivolumab respectively (IpiNivo) in the CheckMate-
753 P3RCT was superior to chemotherapy alone (no 
bevacizumab) (mOS 18.1 versus 14.1 mo; HR, 0.73). 61 

Combined PD-1 inhibition with chemotherapy was su-
perior to chemotherapy alone in the IND227 P3RCT; 
mOS 20.4 versus 17.0 months; HR, 0.83. 367 Sarcomatoid 
mesotheliomas appear to be the variant that benefits 
from immunotherapy, but the potential benefit in 
epithelioid mesothelioma is controversial as real-life 
studies failed to reproduce the encouraging results re-
ported in clinical trials. 368,369 This issue has been 
debated in two recent articles in JTO, and we refer the 
readers to them. 43,44

Precision medicine involving synthetic lethal ap-
proaches is evolving. For example, targeting MTAP 
deletion via MTA-cooperative inhibition of PRMT5 
has revealed a promising phase 1 signal in 
mesothelioma. 370

Adoptive cell therapy is an area of active investiga-
tion in mesothelioma. Chimeric antigen receptor (CAR)

T cells targeting the tumor antigen mesothelin have 
revealed antitumor activity in some patients, but there 
is clearly a need to develop better CAR T cells. 371–373 

Ongoing clinical trials focused on improving their effi-
cacy using novel CAR engineering techniques. 374 Den-
dritic cell therapy consisting of autologous dendritic 
cells loaded with an allogenic tumor cell lysate has also 
been evaluated in mesothelioma. Although a random-
ized clinical trial of this therapy as maintenance after 
chemotherapy was negative, 375 ongoing studies are 
exploring its use with immune checkpoint treatment 
(NCT03546426).

Thymomic Epithelial Tumors
Background

The thymus plays a crucial role in immune cell 
development. 376,377 Tumors arising from the epithelial 
compartment of the thymus are broadly classified into 
thymomas, thymic carcinomas, and thymic neuroendo-
crine tumors. 378 Within the past decade, several major 
studies have helped unravel the cellular, molecular, and 
immunologic features of TETs. 379–382 (Fig. 2A) Mean-
while, advanced laboratory techniques, such as single-cell 
spatial transcriptomics, have provided important insights 
into interactions between the epithelial and hematologi-
cal compartments of the thymus and advanced our 
knowledge of thymoma-associated autoimmune diseases 
(ADs), such as myasthenia gravis. 383,384

Translation of emerging knowledge related to the 
biology of TETs into clinical interventions continues to be 
a work in progress. Despite an improved understanding 
of genomic alterations in TETs, there continues to be a 
paucity of druggable targets resulting in a limited role for 
molecular-targeted therapies at present. 385 Immuno-
therapy has emerged as one of the most promising ap-
proaches for treating several cancers, but its adoption for 
the management of TETs is constrained by an increased 
risk of immune-mediated toxicity. 386 Nevertheless, the 
use of ICIs for the management of thymic carcinomas has 
been facilitated by a recognition of potential biomarkers 
of response and toxicity of immunotherapy in 
TETs. 387,388 Insights into the biology of thymoma-
associated ADs, such as autoimmune pneumonitis, have 
also resulted in the development of clinically relevant 
interventions for these conditions. 389,390 Figure 2B out-
lines the progress in drug development for TETs, 
including notable advances within the past 10 years.

A renewed focus on cutting edge technologies such 
as in vitro organoid culture of TET-derived cells might 
further enable the basic science of TETs to be translated 
into clinically meaningful applications for the manage-
ment of these rare tumors.
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Evolution of the Pathologic Diagnosis of Thymic 
Carcinoma

In 2006, the 2004 WHO replaced the type C thy-
moma with thymic carcinoma specifying the subtype 
(squamous, mucoepidermoid). 391 In 2008, Verghese 392 

reported the poor reproducibility of TET histotype, and 
the ITMIG 393,394 and the ESP organized a consensus 
workshop establishing the basis for the 2015 WHO 
classification. 391 The role of IHC (e.g., co-expression of 
CD5 and CD117 in thymic squamous cell carcinoma to 
differentiate from B3 thymoma and lung squamous cell 
carcinoma) was underscored. To distinguish thymic 
carcinoma from thymoma, an immunopanel of MTAP 
with BAP1, CD117, and TdT yields a sensitivity of 
approximately 88% for thymic carcinoma. 395 In 2018, 
the TCGA study based on 117 cases of thymoma and 
thymic carcinoma found very few targetable mutations. 
In addition, this molecular analysis identified four mo-
lecular subtypes (A, -like, AB-like, B-like, and thymic 
carcinomas) supporting the current WHO classifica-
tion. 379 It is hoped that novel markers will improve 
pathologic classification. In 2021 (WHO fifth edition 349 ), a 
new provisional entity considered as a subtype of squa-
mous cell carcinoma of the thymus was identified 
“micronodular thymic carcinoma with lymphoid hyper-
plasia” mimicking micronodular thymoma with lymphoid 
stroma. In 2024, ITMIG with the French RYTHMIC group 
underlined that pT staging on slides was an issue 
particularly for thymoma and made some recommenda-
tions to improve the reproducibility 396 A new TNM clas-
sification was validated by UICC in 2025 397 and will be 
used starting January 2026. Mediastinal pleura invasion, 
poorly reproducible, is no longer defining stage, and the 
size of the tumor is now incorporated in the new TNM.

Conclusions
There have been major advances and improvements 

in thoracic oncology in the past 20 years. First, and most 
importantly, the campaign against tobacco worked! The 
number of smokers has decreased and so has the per-
centage of LCs caused by smoking. Similarly, the mea-
sures introduced in the 80s in the Western world to 
eliminate or at least drastically reduce exposure to 
commercial asbestos fibers worked: the percentage of 
mesotheliomas caused by asbestos has significantly 
decreased in the recent past. 35 Research demonstrated 
that the old definition of LC was too simplistic: this 
malignancy is driven by different genetic alterations 
which respond to different targeted therapies which in 
turn benefit only specific subgroups of LC patients. 
Twenty years ago, mesothelioma was considered an 
invariably incurable disease with a dismal median sur-
vival of 6 to 18 months. Researchers have now identified

a new variant of mesothelioma caused by BAP1 germ-
line mutations, which respond to therapy, and it is 
associated with prolonged survival and, at times, with a 
cure. 41,62 Notable advances in drug development for 
TETs have also occurred during this period, and a better 
understanding of TET-associated autoimmune diseases 
has resulted in an improvement in clinical outcomes. 
New therapeutic options for mesothelioma and thymic 
malignancies have resulted in some improvement in 
survival. New technologies, spatial transcriptomics, 
multiplex immunofluorescences, RNA-seq, single-cell 
RNA-seq, whole-genome sequencing long-read and 
short-reads, etc., have the potential to revolutionize and 
improve the therapies for thoracic malignancies in the 
near future. The cost of these methodologies, however, 
is prohibitive for academic researchers that rely on 
grants, whose size has not increased during the past 20 
years. The NIH modular R01—the standard NIH grant— 
was $250,000 in 2000, and it is $250,000 in 2025: 
except that the pay-line (i.e., percentage of grant appli-
cations that are funded) has gone from 27% (2000) to 
4% in 2025 to 2026. In other words, we have developed 
the technology and knowledge to make revolutionary 
improvements in cancer research; however, we do not 
have the resources to use this new technology. It is 
hoped that the public and private sectors will join forces 
to generate the funds necessary to perform cutting-edge 
medical research to find novel and more effective op-
tions to prevent and cure thoracic malignancies and all 
types of cancer.
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