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85  Abstract
86
87  In spite of the growing interest in the microbiome in human cancer, there are currently only
88  small-scale lung cancer microbiome studies conducted directly on tissue. As part of the
89  Sherlock-Lung study, we studied the microbiomes of 940 lung cancers (4,090 samples) in never
90 smokers (LCINS) directly from lung tissue using three data types: 16S rRNA gene sequencing
91 (16S), whole-genome sequencing (WGS) with paired blood, and RNA-seq. We observe very low
92  biomass and few microbiome associations in LCINS using 16S and WGS tissue. Using RNA-seq,
93  we observe more total microbial reads, and decreased relative abundance of several
94  commensal bacteria at the genus and species levels in tumors relative to paired normal lung
95 tissue. Among all datasets, we see no consistent associations between the lung tissue
96 microbiome, or circulating bacterial DNA, and any available demographic and clinical features,
97 including age, sex, genetic ancestry, second-hand tobacco smoking exposure, LCINS histology,
98 stage, and overall survival. We also observe no microbiome associations with any human
99 genomic alterations within the same samples. Every null result should be interpreted with
100 caution given the possibility of future methodological breakthroughs. However, all together,
101  using multiple data types in nearly 1,000 patients, we find no substantive role for the lung
102  cancer microbiome in treatment-naive LCINS.
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INTRODUCTION

The human cancer microbiome is a rapidly growing field of research. To date, most major
studies on the human cancer microbiome have focused on organs with high bacterial
abundance, e.g., mouth, stomach, and colon, identifying connections between the microbiome
and cancer incidence or progression. Additionally, several specific microbes have been shown
to produce genotoxins, suggesting a possible role in cancer initiation. These include
Helicobacter pylori, a Group 1 carcinogen which causes stomach cancer?, as well as pks+
Escherichia coli*1°, Bacteroides fragilis'*~*>, and Fusobacterium nucleatum?®=?2, each associated
with colorectal cancer. Resultantly, enthusiasm for the microbiome as a target for cancer early
detection?*2°, prevention, and treatment?® has grown significantly in recent years. Despite this,
research on the cancer microbiomes of most organs has been limited, including on the lung.

Relatively little is known about the lung microbiome even in healthy individuals. Historically, the
lungs have been considered sterile organs due to repeated failure to culture bacteria from lung
samples?’. This idea has since been challenged using culture-free sequencing methods. Much of
the current research on the lung microbiome is derived from samples collected via sputum or
bronchoalveolar lavage (BAL). Studies performed on healthy individuals and cancer patients
with samples collected using BAL have characterized the lung microbiome as being similar in
composition to the oral and upper airway microbiomes, albeit at much lower total
abundance?®32, In contrast, small-scale studies conducted on surgically removed tumor and
normal lung tissue - which theoretically precludes contamination from the upper airways?? -
identified much lower proportions of upper airway bacteria3*38. A recent study of the murine
lung microbiome concluded that although both methods may be valid for studying the lung
microbiome, samples collected from BAL fluid versus directly from lung tissue within the same
animals can be distinguished via beta diversity analysis®°.

Alterations in the lung microbiome are connected with several diseases*® such as chronic
obstructive pulmonary disease*'™**, asthma*~*’, and idiopathic pulmonary fibrosis*®.
Furthermore, changes in the lung microbiome of mice has been shown to influence
development of multiple sclerosis in the brain®®. Many studies have also identified differences
in the lung microbiomes of healthy versus cancer patients3236-38°0->4 gnd tumor versus adjacent
normal tissue3436-38 and several have found associations with tumor clinical features, such as
histology>>, stage34, and progression®. However, these studies are predominantly based on
small sets of patients (on average less than 100 subjects, ranging from 10°! to 17637 subjects
total), resulting in discrepant results. Additionally, most datasets are composed primarily of
smokers, and thus the role of the microbiome specifically in never-smoker lung cancer is largely
unstudied.

In this study, we used 16S sequencing to analyze the microbiome of 701 surgically removed
treatment-naive lung cancers in never smokers (LCINS) plus 563 tumor-adjacent normal lung
samples, the largest sample collection to date. To further increase the size of our study, we
leveraged an additional 1,623 WGS samples (tumor, normal lung, blood) and 1,203 RNA-seq
samples (tumor, normal lung) collected as part of Sherlock-Lung and investigated bacterial
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reads in these samples. With considerable overlap of subjects between datasets, this study
includes a total of 4,090 samples from 940 cancer patients who were treatment naive at the
time of sample collection. Despite the comprehensive analysis, we found no evidence for
clinically-relevant associations between the composition or diversity of the lung cancer
microbiome and LCINS demographics, tumor characteristics, previous respiratory diseases,
genomic features, and survival or recurrence.

RESULTS
Description of study samples

This study is based on the Sherlock-Lung project®” of LCINS. Briefly, as part of Sherlock-Lung
(hereafter referred to simply as Sherlock), we have analyzed WGS*%°, 16S, and RNA-seq data
from hundreds of LCINS across North and South America, Europe, and Asia, together with
epidemiological, clinical, and morphological features.

Specifically, we examined the microbiomes of 940 LCINS patients, 740 females and 200 males of
median age 64.7 years, with 639 paired adjacent normal tissue plus 447 WGS blood samples
(Table 1, Supplementary Data 1). Sex was self-reported and confirmed via WGS where available.
Based on WGS-derived genetic ancestry, this cohort includes 441 patients of European ancestry
from the United States, Canada, and Europe; 338 of East Asian ancestry from Hong Kong,
Taiwan, the United States, and Canada; 28 of Native American/Mixed ancestry from Europe and
Canada, plus four of African ancestry from the United States and Canada (Table 1,
Supplementary Data 1). For patients without WGS data, ancestry was self-reported, including
58 patients of East Asian ancestry from Hong Kong, Taiwan, and Canada; 46 of European
ancestry from Europe and the United States; and 24 of Native American/Mixed ancestry (Table
1, Supplementary Data 1). One patient from Canada was of unknown ancestry.

As is typical in LCINS, the most common histology was adenocarcinomas (n=811), followed by
carcinoid tumors (n=60), squamous cell carcinomas (n=40), and various other tumor types
(n=29) (Table 1, Supplementary Data 1). The majority of tumors (n=522) and normal lung tissue
(n=278) were sequenced using all three approaches: WGS, 16S, and RNA-seq (Figure 1a,
Supplementary Data 1).

Multi-omic identification of bacterial reads

Recently, debate has emerged about best practices for microbiome research?3¢%-62 ysing next-
generation sequencing (NGS) after several methodological errors were identified in a major
pan-cancer study on the cancer microbiome®. These errors resulted in millions of unaligned
human sequences being mis-identified as bacterial, which affected some of the findings of the
original paper®2. To avoid assigning human reads to bacterial genomes, as discussed in Gihawi
et al.?2, we aligned all reads to the CHM13 T2T genome® to filter out as many human
sequences as possible prior to taxonomic assignment with Kraken2%* (Figure 1b), then extracted
unaligned reads from this re-alignment for use with Kraken2. Following taxonomic assignment,
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we used Bracken® to adjust read counts at the genus level for both WGS and 16S sequencing,
but chose not to use Bracken for the RNA-seq dataset as Bracken was developed for DNA-based
sequencing (Methods). Taxonomic assighment results are presented in Supplementary Data 2-
4,

Despite rigorous filtering to remove human reads, many unaligned reads in all datasets were
assigned by Kraken2 to the human genome (median 48.1%, 6.4%, 8.3% in RNA-seq, WGS, 16S
respectively) (Figure 1c, Supplementary Data 2-4). These reads likely originate from imperfect
mapping of human®?, often repetitive, reads to the human genome. In 16S samples, many
human reads originate from the mitochondrial genome which contains a 16S rRNA gene that
may be amplified off-target in 16S experiments®. RNA-seq samples contained the most human
reads after alignment, perhaps in part due to the relative difficulty of filtering spliced human
RNA sequences via mapping.

Many reads were of unknown origin (median 4.9%, 86.7%, 55.0% in RNA-seq, WGS, 16S,
respectively), likely originating from sequencing artifacts, short sequences that could not be
confidently assigned, or reads from microbes with incomplete reference genomes. Almost all
taxonomically assigned, non-human reads were bacterial (median 99.9%, 98.7%, 100% among
non-human reads in RNA, WGS, 16S, respectively), thus we focused our downstream analyses
solely on the bacterial component of the datasets.

We next generated two datasets from the bacterial abundances: one with batch correction
applied using ComBat-Seq, and one without batch correction. Reads without batch correction
were used solely to describe the landscape of the lung cancer microbiome as batch correction
can, in some cases, greatly inflate the abundances of rare bacteria®!. Batch corrected data was
used for all statistical associations between the microbiome and clinical or demographic
features. WGS associations were performed separately for samples sequenced for this study
(n=1,246) and samples from our previous study (n= 377, Zhang et al. 2021)°® to account for a
strong batch effect (Supplementary Figure 1). Results from these two WGS data subsets were
analyzed separately and combined as a meta-analysis downstream. For 16S data, abundances
were not batch corrected as these samples did not show evidence of strong batch effects.

Both batch corrected and uncorrected abundances were then decontaminated in silico. For 16S
samples, PCR negative controls were used to calculate bacterial contamination fractions with
the SCRuB®’ algorithm, using PCR well location information to track well-to-well leakage. The
WGS and RNA-seq datasets were originally collected for studies on human
genomics/transcriptomics and therefore did not have paired negative controls, as this is not
standard for non-metagenomic experiments. Despite this limitation, we sought to include both
datasets as complementary data together with our 16S dataset to corroborate any findings. In
all datasets, we performed literature-based decontamination by removing bacterial genera that
are found to frequently contaminate NGS experiments® and have not been known to colonize
human microbiomes®(Methods). Removal of reads at the genus level were recursively
propagated’? to higher taxonomic ranks to remove contamination at all levels of the taxonomy.
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The raw composition of the microbiome at the phylum and genus levels are shown in
Supplementary Figure 2a. Prior to decontamination, we observed minimal correlation between
sequencing platforms within the same samples (Supplementary Figure 2c-f). Following batch
correction and decontamination, phylum-level relative abundances and genus-level Shannon
alpha diversity were significantly, but weakly, correlated across all datasets (alpha diversity
Pearson R values between 0.15-0.33, phylum-level abundances Pearson R values between 0.0-
0.27) (Supplementary Figure 3). Furthermore, within-subject beta diversity accounted for a high
percentage of overall variance among all samples (Permutational Multivariate ANOVA, 999
iterations, p=0.001, R’=0.455; Supplementary Data 5). This indicates that although microbiome
composition and diversity results differ across sequencing modalities, the microbiome
composition per subject, relative to other subjects, is similar across datasets.

The lung cancer microbiome has low biomass across all data types

16S samples had the most bacterial reads per million, as expected due to the targeted nature of
16S rRNA sequencing, followed by RNA-seq, and lastly WGS (Figure 1d). After read filtering to
remove contaminants, we observed low absolute bacterial read totals in WGS (median 344,
162, and 1,440 bacterial reads in tumor, adjacent lung, and blood samples, respectively) and
16S sequencing samples (median 730 and 773 bacterial reads in tumor and adjacent normal
tissue, respectively). The median numbers of bacterial reads in RNA-seq samples were 9,080
and 11,053 in tumor and adjacent normal samples, respectively (Figure 1e). Of note, WGS
samples were sequenced to differing depth between tumor (median human genome coverage
87X) and normal lung tissue (median coverage 34x, read depth statistics for all samples
provided in Table 2). We did not use microbiome data from WGS for alpha or beta diversity
comparisons between tumor and normal lung tissue due to this difference, which could bias the
results, and also due to the extremely low bacterial read depth in normal tissue.

To put these results into context, we compared the read counts of Sherlock WGS samples with
those from the Pan-cancer analysis of whole genomes working group (PCAWG)’! (Figure 1f). We
used the read counts from the PCAWG breast (BRCA), bladder (BLCA), and head and neck
squamous cell carcinoma (HNSC) WGS samples re-analyzed by Gihawi et al®?, and re-analyzed
the PCAWG lung cancer WGS (n=96, of which 81 from smokers, not reported in Gihawi et al®?).
16S samples were not included in this comparison as no public 16S data both derived from lung
tissue and including total read counts information were available. We found that Sherlock WGS
samples had lower genus-level bacterial reads in comparison to lung and other cancer types.
Differences in DNA extraction and sequencing as well as the different smoking status may
contribute to these findings as PCAWG WGS is known to have batch-dependent bacterial
contamination’? (Figure 1f).

For downstream statistical tests, RNA-seq samples with less than 500 reads were excluded to
improve the reliability of associations. Due to the considerably lower read depth of 16S and
WGS samples, this read cutoff was relaxed to 250 reads in 16S and 100 reads in WGS to
preserve sample size. For intra-class correlation analyses (phylum-level relative abundances,
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alpha diversity, beta diversity), a cutoff of 250 reads was applied to all datasets to allow for
valid comparisons.

Microbiome composition across tissue and data types

Proteobacteria (also known as Pseudomonadota, mean relative abundances per sequencing
modality ranging 36.4 - 67.4%), Actinobacteria (also known as Actinomycetota, mean relative
abundances 15.0 - 21.0%), and Firmicutes (also known as Bacillota, mean relative abundances
14.5 - 31.1%), were the most abundant phyla across all Sherlock datasets and biospecimen
types (Figure 2a). However, their mean relative abundances, particularly that of Firmicutes,
varied substantially across sequencing modalities (Figure 2b). Several bacterial genera were
observed across all three datasets, e.g., Acinetobacter (mean relative abundance 5.9 - 8.6%),
Corynebacterium (12.9 - 13.2%), Pseudomonas (2.7 — 23.9%), Staphylococcus (3.5 - 11.1%), and
Streptococcus (2.3 — 3.9%,; Figure 2c, Supplementary Figure 4). Notably, these were all among
the top ten most abundant bacterial genera in a recent 16S sequencing study of 245 lung
tumors (43 never smokers)® with many negative controls and strict decontamination, thus
demonstrating a degree of concordance between studies.

Among the three datasets, RNA-seq samples had the highest genus richness of all datasets
regardless of read sampling depth (Figure 2d).

Comparing the tumor versus normal lung microbiome in 16S data, we identified few
differentially abundant bacteria which were not significant after multiple testing correction
(Figure 3a, Supplementary Figure 5a, Supplementary Data 6), and observed slightly decreased
alpha diversity in tumor samples (mean diversity=1.9) compared to paired normal tissues
(mean diversity=2.0, Wilcoxon p=0.0015, Figure 3b). Using RNA-seq, several bacterial genera
were enriched in normal tissue compared with tumors (Figure 3c, Supplementary Figure 5b,
Supplementary Data 7), and sample alpha diversity was marginally decreased in tumor tissue
relative to paired normal tissues (Wilcoxon p=0.028, mean diversity in tumors=3.03, normal
tissue=3.08) (Figure 3d). Again using RNA-seq, we obtained similar results when we tested
differential abundance of species within the most abundant genera (Acinetobacter,
Corynebacterium, Pseudomonas, Staphylococcus, and Streptococcus): many Corynebacterium
and Staphylococcus species were significantly enriched in normal lung tissue versus tumor
tissue, and several species of Pseudomonas and Acinetobacter were marginally enriched in
tumor tissue versus normal lung tissue when analyzed using ANCOM-BC (Supplementary Figure
5c,d, Supplementary Data 8).

We performed power calculations to derive the minimum effect sizes achieving 80% statistical
power for detecting tumor/normal differences using either Bonferroni corrected p-value
threshold or using 0.01 as p-value threshold (Methods). For tumor-normal comparisons, the
minimum effect sizes are calculated as Bl = 0.14 for RNA-seq analysis (7 = 3.921 — 5, Bonferroni
correction, 1279 taxa) or Bl = 0.096 (& = 0.01), and Pl = 0.23 for 16S sRNA analysis (Bl = 2.8F —
4, Bonferroni correction, 141 taxa) or @l = 0.17 (@ = 0.01). This suggests that we have sufficient
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statistical power to detect tumor-normal differences in the microbiome with modest effect
sizes if they were present in our data.

We did not compare tumor WGS data with normal lung tissue WGS because of the different
read depth between tumor and normal tissue, as previously stated.

Microbiome characteristics in relation to demographic and clinical factors

We tested several factors in association with microbiome features. First, we examined the
relationship between microbiome alpha diversity versus clinical and demographic features. We
observed variation in richness (Kruskal-Wallis, p<2.2e-16) and diversity (Kruskal-Wallis,
p=0.00033) between study sites (Supplementary Figure 6a,b). Other associations in all datasets
were not significant after multiple testing corrections (Figure 3e). Some associations were
nominally significant. In WGS, stage IV tumors had increased genus richness relative to Stage |
tumors (unadjusted p=0.05, B=1.14, 95% confidence interval= [-0.509, 2.79]), and carcinoid
tumors had decreased alpha diversity compared to adenocarcinomas (B=-0.21, unadjusted
p=0.02, 95% confidence interval=[-0.36, -0.06]). In the 16S dataset, Native American/mixed
ancestry patients had decreased tumor alpha diversity relative to European patients
(unadjusted p=0.03, B=-0.26, 95% confidence interval=[-0.50, -0.02]).

Measuring beta diversity, WGS and 16S datasets showed significant variation according to
sample study site while RNA-seq after batch correction was not significantly associated. The
RNA-seq dataset showed small, significant differences according to tumor-normal status, age at
diagnosis, histology, and vital status, but no differences were observed according to ancestry,
sex, tumor stage, or development of metastases. No clinical and demographic variables were
associated with beta-diversity using 16S or WGS data (Supplementary Figure 6c).

Recent research has suggested that circulating bacterial DNA in blood may be associated with
clinical outcomes, including in lung cancer?=%>, To investigate this hypothesis, we tested
associations between blood microbial diversity measures and lung cancer clinical features. We
correlated relative abundances between paired tumor and blood samples at the phylum level
to test the plausibility of detecting lung bacteria in blood samples. Among the most prevalent
phyla (Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes), only abundance of
phylum Firmicutes (p<2.2e-16, Pearson R=0.5) and Proteobacteria (p=9.1e-05, Pearson R=0.19)
was significantly correlated between tumor and paired blood samples (Supplementary Figure
7a). At the genus level, abundance of Staphylococcus (classified under phylum Firmicutes) was
correlated between blood and tumor samples (p<2.2e-16, Pearson R=0.58). Genus richness and
alpha diversity in blood samples were not associated with any tested clinical features, including
lung cancer stage, histology, risk of recurrence, or vital status (Supplementary Figure 7b), and
beta diversity in blood was associated with sample study sites and weakly associated with vital
status (p=0.026, R’=0.008) and tumor stage (p=0.043, R?=0.02) (Supplementary Figure 7c).

Notably, using RNA-seq, 16S, and tumor and blood WGS data, we found no associations
between genus-level relative abundances for any bacteria, adjusted by histology and age in ten
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year categories, and overall survival, stratified by study site, age at diagnosis (age>65, age<65),
and tumor stage (Figure 4). Similarly, no significant associations were observed for bacterial
richness or alpha diversity with overall survival (Supplementary Figure 8). Restricting survival
analyses to lung adenocarcinomas only likewise produced no significant associations
(Supplementary Figure 9).

We performed power calculations to derive the minimum hazard ratios achieving 80%
statistical power. Using the Bonferroni-corrected p-value thresholds (37 taxa for RNA-seq, 25
taxa for 16S rRNA, and 45 taxa for WGS), the minimum hazard ratio required to achieve 80%
power was approximately 1.34 for all three platforms. When using a p-value threshold of 0.01,
the minimum hazard ratios to achieve 80% power were approximately 1.27 for WGS, 1.30 for
RNA-seq, and 1.29 for 16S rRNA. This indicates that if there were survival associations with
modest effect sizes, we would have had sufficient statistical power to detect them.

We also tested whether RNA-seq and 16S bacterial richness or diversity was associated with
immune cells by leveraging paired human transcriptomic data plus cell deconvolution methods.
We noted a weak positive correlation between RNA-seq genus richness and log proportion of
Th1 cells in tumor tissue, and a weak negative correlation between 16S Shannon diversity and
log proportion of B-cells in normal tissues. Ultimately, however, we noticed no strong,
consistent trends between datasets (Supplementary Figure 10).

The microbiome is not associated with human genomic features

We took advantage of the associated human whole-genome®8°° data from these same samples
and investigated whether major driver mutations or fusions, copy number alterations, kataegis,
or mutational signatures in the human lung cancer genome were associated with microbiome
richness and alpha diversity, adjusted for study site differences (Supplementary Data 9,
Supplementary Figure 11a,b). All associations between the microbiome and genomic features
were not significant after multiple testing correction (Supplementary Figure 11c).

DISCUSSION

In the largest study of the LCINS microbiome to date using 16S sequencing, together with WGS
and RNA-seq, we observed very low microbial abundance across over 4,000 samples, and little
evidence of association between the composition or diversity of the lung cancer microbiome
and LCINS tumor characteristics, genomic features, and survival.

The bulk of research on the lung microbiome to date is derived from samples collected via
bronchoalveolar lavage (BAL), and the consensus of these studies is that the healthy lung
microbiome is composed mainly of oral and tracheal commensals (e.g., genera Streptococcus
15.7 - 38.7%, Prevotella 5 - 26.5%, Veillonella 3.8 - 4.0%, Haemophilus 0.02 - 15.5%, and
Neisseria 6.5 - 9.3% among two BAL-based lung cancer studies®®>?, and among the highest
abundance in several other studies in cancer 3> and non-cancer?®-3C patients). While these
genera were present in our study, they summed to a small minority of the overall microbiome
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composition in all three data types (mean total relative abundance 4.0% - 5.8%). Instead, the
highest abundance genera across all data types in tumors and normal lung were Acinetobacter,
Corynebacterium, Pseudomonas, and Staphylococcus. These findings closely agree with a
recent, highly decontaminated 16S sequencing dataset of 245 lung tumors (43 never smokers)®®
in which these genera were all among the top ten most abundant after decontamination. In
blood WGS data, the most abundant bacteria were Methylobacterium, Ralstonia, Burkholderia,
and Pseudomonas. Of note, abundance of phyla Firmicutes and Proteobacteria and genus
Staphylococcus were correlated between tumor samples and paired blood. These correlations
may suggest migration of these bacteria from the lung to the blood, although translocation
from other organs and/or contaminations that could not be removed with the current
approaches are always possible contributing factors. Nonetheless, we ultimately found no
clinical associations with circulating bacteria.

RNA-seq data showed minor differences between tumor samples and paired adjacent normal
tissue in alpha or beta diversity, and an enrichment of several human commensals in normal
tissue (e.g., Corynebacterium, Anaerococcus, Finegoldia). Tumor tissues had slightly decreased
alpha diversity compared to normal tissues in both the 16S and RNA-seq datasets. However, we
noted no other robust associations of microbial abundances, richness, alpha diversity, or beta
diversity with any available clinical features or patient survival, no associations between the
microbiome and known tumor genomic features, and no consistent trends in microbiome-
immune system crosstalk.

There are several limitations in this study. First, our normal lung tissue samples are only from
lung cancer patients since lung tissue from healthy individuals can rarely be collected. Thus, we
may have missed differences in the lung microbiome between healthy individuals and cancer
patients. This study provides a snapshot of the microbiome at the time of tumor resection and
our samples were treatment-naive, so we could not investigate the role of microbiome on
treatment response. This study lacks negative controls for RNA-seq and WGS datasets which
limits identification of contaminating bacteria in these datasets. However, incomplete
decontamination is more likely to result in false-positive than false-negative associations®%’3,
Furthermore, we leveraged state-of-the-art decontamination algorithms using negative
controls in our 16S dataset and likewise produced no significant associations. Lastly, removing
additional bacteria would unlikely result in positive associations given that we already have
sufficient statistical power to detect associations with even modest effect sizes.

Every null result should be interpreted with caution. As methods for bacterial sequencing and
microbiome analysis evolve to better accommodate low biomass samples, it is possible that a
role for the lung microbiome in cancer could be found in the future. But, as it stands, after
applying multi-omics datasets with rigorous quality control and state-of-the-art analytical
methods in 4,090 samples across 940 patients, the lung cancer microbiome does not appear to
have a dominant role in LCINS.

METHODS
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Ethics declaration

The NCI exclusively received de-identified samples and data from collaborating centers, had no
direct interaction with study subjects, and did not use or generate any identifiable private
information, therefore the Sherlock-Lung study was classified as “Not Human Subject Research
(NHSR)” according to the Federal Common Rule (45 CFR 46; eCFR.gov). Some tissue specimens
were obtained from the IUCPQ Tissue Bank, site of the Quebec Respiratory Health Network
Biobank or the FQRS (www.tissuebank.ca) in compliance with Institutional Review Board-
approved management modalities. Some samples and data from patients included in this study
were provided by the INCLIVA Biobank (PT17/0015/0049), integrated in the Spanish National
Biobanks Network and in the Valencian Biobanking Network, and they were processed
following standard operating procedures with the appropriate approval of the Ethics and
Scientific Committees. All collaborating centers obtained informed consent for publication of
human data from participants under protocols approved by their respective Institutional
Review Boards (IRBs).

Sample Collection and Handling

Samples were collected as described in previous Sherlock-Lung publications®”>8. We collected
tumor samples from 940 patients with histologically confirmed lung cancer from various
geographical regions: 220 from Taiwan; 208 from International Agency for Research on Cancer,
Lyon, France, collected in Russia, Czech Republic, Romania, Serbia, and Poland; 133 from Hong
Kong; 113 from Quebec City, Canada; 78 from Nice, France; 72 from Toronto, Canada; 26 from
Massachusetts, USA; 22 from Connecticut, USA; 18 from Mexico City, Mexico; 13 from New
York, USA; 13 from Minnesota, USA; 11 from Florida, USA; 9 from Valencia, Spain; and 4 from
Lima, Peru. Fresh frozen tumor tissue and matched whole blood samples or fresh frozen normal
lung tissue (collected at least 3 cm away from the tumor when possible) were obtained from
these treatment-naive patients. Genetic ancestry information was defined using WGS by
clustering with the 1000 Genome Project (1KGR) reference panel with VerifyBamID2’4. In the
absence of WGS data, we relied on self-reported ancestry. For each patient, we reported the
geographical location where the cancer was diagnosed.

We adhered to strict sample selection criteria:

1) Contamination and relatedness: Cross-sample contamination was kept below 1% using
Conpair’®, and relatedness was maintained below 0.2 using Somalier’®.

2) Copy number analysis: Subjects with abnormal copy number profiles in normal samples
were excluded, as determined by Battenberg’”.

3) Mutational signatures: Tumor samples exhibiting mutational signatures SBS7 (associated
with ultraviolet light exposure) or SBS31 (associated with platinum chemotherapy) were
excluded.

4) WGS quality control: Tumor samples with a total genomic alteration count of <100 or
<1,000 and an NRPCC (number of reads per clonal copy) <10 were excluded.
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These stringent criteria were consistently applied to ensure data robustness and reliability in
the Sherlock-Lung study.

Whole-genome sequencing

WGS library construction was carried out as previously reported>®>°. Briefly, frozen tumor
tissue along with matched blood or normal tissue samples were immediately placed into 1ml of
0.2 mg/ml Proteinase K (Qiagen) in DNA lysis buffer (10 mM Tris-Cl, pH 8.0; 0.1 M EDTA, pH 8.0;
0.5% SDS) and incubated for 24 hours at 56°C with shaking at 850 rpm in a Thermomixer R
(Eppendorf) until completely lysed. Genomic DNA was extracted from fresh frozen tissue using
the QIAmp DNA Mini Kit (Qiagen) following the manufacturer's protocol. Each sample was
eluted in 200 pl AE buffer, and DNA concentration was measured using a Nanodrop
spectrophotometer. All DNA samples were aliquoted and stored at —80°C until needed.

DNA was quantified using the QuantiFluor® dsDNA System (Promega Corporation, USA). DNA
standardized to a concentration of 25 ng/ul and underwent fragment analysis using the
AmpFLSTR™ Identifiler™ PCR Amplification Kit (ThermoFisher Scientific, USA). DNA samples
were required to meet minimum mass and concentration thresholds for each assay and show
no evidence of contamination or profile discordance in the Identifiler assay. Samples that met
these criteria were aliquoted at the appropriate mass needed for downstream assay
processing.

The Broad Institute (https://www.broadinstitute.org) performed WGS on the Novaseq6000
platform using lllumina protocols for 2x150bp paired-end sequencing in 1246 (this study) and
the lllumina HiSeq X platform (n=377) for our previous publication®® . FASTQ files were
generated post-lllumina base-calling. These paired FASTQ files were converted into unmapped
BAM files using the GATK pipeline (https://github.com/gatk-workflows/seq-format-conversion)
and were then processed using GATK on the cloud-based TERRA workspaces platform
(https://app.terra.bio). The sequencing data was then aligned to the human reference genome
GATK-GRCh38, and the resulting aligned BAM files were transferred to the NIH HPC system
(https://hpc.nih.gov) for downstream analyses.

RNA sequencing

RNA-seq was performed using the lllumina NovaSeq6000 platform and Roche KAPA RNA
HyperPrep with RiboErase protocol, generating 2x151bp paired-end reads. For human
transcriptomics analyses, FASTQ files were aligned to the human reference genome GATK-
GRCh38 using STAR’® (v2.7.3), and were quantified using HTSeq(v2.0.4)”° and GENCODE v358°,
Counts data were batch corrected with ComBat-Seq®?, followed by TMM normalization using
DESeq282.

16S Microbiome Sequencing
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For each sample, 100 ng of DNA, utilizing Quant-iT PicoGreen dsDNA (Thermo Fisher Scientific,
Waltham, MA) quantitation, is split into 50 ng (5 ng/ulL) aliquots for two separate PCR reactions.
PCR was performed in 25 uL reaction volumes consisting of: 50 ng (10 uL) of DNA, 10 ul of 2X
PlatinumTM Hot Start PCR Master Mix (ThermoFisher Scientific), 3 uL of MBG Water, and 2 uL
of the 5 uM 16S rRNA v4 (515f-806r) barcoded primer mix, comprised of equimolar forward and
reverse primer pairs targeting the V4 region of the 16S rRNA gene®. Controls without input
DNA were also included for PCR with the same reaction volumes, including a ‘water’ control
with 10ul of MBG water in place of 10uL of DNA, and a ‘no template’ control with no DNA or
added water. 515f forward PCR primer sequence was:

AATGATACGGCGACCACCGAGATCTACAC TATGGTAATT GT GTGCCAGCMGCCGCGGTAA

consisting of the 5’ lllumina adapter, forward primer pad, forward primer linker and forward
primer. 806r reverse PCR primer sequence was:

CAAGCAGAAGACGGCATACGAGAT XXXXXXXXXXXX AGTCAGTCAG CC
GGACTACHVGGGTWTCTAAT

consisting of the reverse complement of the 3’ lllumina adapter, Golay barcode (12 bp barcode
identifier generated specifically for this primer set to support multiplexing of samples), reverse
primer pad, reverse primer linker and reverse primer (Integrated DNA Technologies, Coralville,
IA). Thermal cycling was performed with the following PCR conditions: 94° C hold for 3 min,
denature at 94° C for 45 s, anneal at 50° C for 1 min, extend at 72° C for 1 min 30 s for 25 cycles,
followed by a 72° C hold for 10 min.

Sample PCR replicates were then pooled and purified using a 1:1 AMPure XP (Beckman Coulter
Genomics, Danvers, MA) ratio, performing the final elution in 30 uL of Buffer EB (Qiagen,
Germantown, MD). Amplified sample libraries were quantified using Quant-iT PicoGreen
dsDNA Reagent (ThermoFisher Scientific, Waltham, MA) and up to 192, with unique barcoded
adapters, were combined in equal amounts (100 ng each) and pools normalized to 10 nM with
Buffer EB for pooled sequencing.

Sequencing was performed at the Cancer Genomics Research Laboratory using the Illumina
MiSeq v2, 500 cycle kit (lllumina, San Diego, CA, USA) following the manufacturer’s protocol®*
with the following modifications: Pooled libraries were diluted to 5 pM in a serial dilution, and
25% denatured 5pM PhiX was spiked-in and added to the “Load Sample” well. 3.4ul of Index
Sequencing Primer at 100mM, 3.4ul of Read 1 Sequencing primer at 100mM and 3.4ul of Read
2 Sequencing Primer at 100uM was added to wells 13, 12 and 14 of the MiSeq sequencing
cartridge. 2x251 Paired end sequencing was performed on the MiSeq, with up to 192 samples
per run.

Taxonomic Classification of Non-Human Reads

For classification of RNA-seq and WGS, unaligned read pairs were extracted from GATK-
GRCh38-aligned bam files. To remove additional human reads, these reads were then realigned
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to the CHM13 T2T genome reference®, using bwa-mem?®> (v0.7.17) to align WGS and 16S reads,
and hisat®(v2.2.2.1-ngs3.0.1) to align RNA-seq reads. Unaligned read pairs were extracted from
this alignment. Reads were then trimmed using Trimmomatic®” to remove trailing bases with
average quality score less than 10 using a sliding window. Reads smaller than 45bp after
trimming were discarded.

Taxonomic assighment of reads was performed with Kraken2%4 (v2.1.2) using the Kraken2
standard database plus fungal and protozoan genomes downloaded on June 5th, 2023. For
taxonomic assignment of RNA-seq reads the human transcriptome was also included in the
database to detect unaligned human reads spanning splice junctions. WGS read counts at the
genus level were adjusted using Bracken® with a minimum of 2 reads per genus required prior
to readjustment, and genera with single reads were discarded. Bacterial genera with fewer than
5 assigned reads in RNA-seq samples were discarded to remove false-positive assignments.
Bracken was not used to adjust RNA-seq read counts as we reasoned that Bracken’s genome
uniqueness statistic assumes roughly even genome coverage which may be violated in cases
where specific bacterial transcripts are highly upregulated.

Reads from 16S rRNA gene sequencing were taxonomically classified with Kraken2 using a
Kraken2 database created from downloaded 16S gene sequences from NCBI plus human
genome GRCh38.p14. This database has the advantage of using identical taxonomies with the
Kraken2 standard database, which facilitates comparison between sequencing platforms. 16S
sequences were assigned with Kraken2 using a confidence threshold of 0.02 due to the high
degree of similarity between 16S rRNA genes at the genus level. Genus-level read counts were
then adjusted using Bracken®® (v2.8) with a requirement of two reads per genus prior to
readjustment.

In silico sequencing and Kraken2 confidence threshold identification

Using InSilicoSeq®¥(v1.0), one million HiSeq reads were simulated from GATK-GRCh38 with
uniform coverage. These reads were mapped back to GATK-GRCh38 using bwa-mem&(v0.7.17),
then unaligned reads were extracted and pooled with 50,000 total reads simulated in the same
manner from the genomes of eleven human-associated bacteria: Escherichia coli (ASM584v2),
Pseudomonas aeruginosa (ASM676v1), Prevotella melaninogenica (ASM14440v1), Rothia
mucilaginosa (ASM17561v1), Haemophilus parainfluenzae (ASM19140v1), Klebsiella
pneumoniae (ASM24018v2), Staphylococcus epidermidis (ASM609437v1), Moraxella osloensis
(ASM155395v1), Cutibacterium acnes (ASM37670v1), Streptococcus oralis (46338 H01), and
Corynebacterium tuberculostearicum (ASM1672836v1). These reads were taxonomically
assigned using Kraken2 with default settings, and the percentage confidence with which each
read was classified was calculated. A confidence threshold of 10% was chosen as, at this level,
all simulated bacterial species were identifiable and most false-positive classifications would be
excluded (Supplementary Figure 12).

Decontamination
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16S sequencing samples were decontaminated on a plate-by-plate basis using the SCRuB
algorithm®” with default parameters and PCR well location information to track well leakage
(Supplementary Figure 13).

For WGS, previous studies have used paired blood samples from whole-genome sequencing
experiments to flag contaminants under the assumption that tissue-associated microbes should
be statistically more prevalent in tissue compared to paired blood’®. Under this hypothesis,
bacteria which are equally prevalent in blood and in paired tissue would be considered
contamination. However, recent research on the human blood microbiome, with special
attention paid to contaminant control, has indicated that the blood contains low levels of
transient bacterial DNA, including from commensals previously associated with the oral/lung
microbiomes®. Further, circulating microbial DNA, likely from tumor tissue, has been suggested
as a biomarker for lung cancer detection?”. Finally, low bacterial read depth in the WGS samples
greatly reduces the overall sensitivity of such a comparison. Thus, we chose not to use this
method for decontamination in this study. Other decontamination methods, such as heuristic-
based approaches® or the popular decontam®® algorithm were considered for the WGS and
RNA-seq datasets. However, assumptions made by the frequency-based method of decontam
are not valid in low-biomass environments®.

In all datasets, bacterial genera identified as frequent NGS contaminants were removed using a
list compiled by Salter et al.®8, and cross-referenced with a list of human-associated bacterial
pathogens®. Bacterial genera identified as frequent NGS contaminators that encompassed two
or more human-associated species were rescued to avoid discarding possibly true-positive
reads. All other frequent NGS contaminators were discarded (Supplementary Data 10).

Genus Cutibacterium was also removed after reviewing the data. Cutibacterium is one of the
most common skin commensals and a frequent contaminator of NGS experiments®8,
Cutibacterium was universally prevalent and highly abundant in our RNA-seq and WGS
datasets, but infrequently observed in our 16S sequencing samples. Its removal from the WGS
dataset considerably improved alpha diversity correlations and composition correlations
between samples sequenced via both WGS and 16S sequencing. Furthermore, a recent lung
cancer microbiome study with many negative controls showed minimal presence of
Cutibacterium in lung tissue after decontamination3’. For these reasons, Cutibacterium was
identified as a likely contaminant and removed from the dataset. Several other skin-associated
bacteria, such as Corynebacterium and Staphylococcus, did not share these properties and were
therefore not removed from the dataset: they were prevalent across all datasets, they were
observed in the same decontaminated lung microbiome dataset referenced above®>, and they
are additionally associated with the nasal microbiome®! and, more generally, humid
microenvironments®2,

After decontamination at the genus level, reads were then adjusted at higher levels in the
taxonomy as described by Dohlman et al.”® Briefly, the number of reads assigned to a given
bacterial OTU was multiplied by the percentage of non-contaminant reads at the next lowest
taxonomic level within that OTU (e.g. family level reads are adjusted by multiplying the number
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of reads assigned to family X by the proportion of genus-level, non-contaminant reads within
family X). This process was used recursively to decontaminate from the family level to the top
of the taxonomy.

Batch Correction

WGS and RNA-seq genus- and phylum-level raw abundances (i.e. with no decontamination
applied) were corrected to remove batch effects using Combat-Seq. Prior to batch correction,
bacterial OTUs with prevalence less than 1% were removed in both datasets. For WGS, DNA
extraction batch was used as the adjustment variable, and no biological variable was set as DNA
extraction batch was partially confounded with biosample type. All RNA for this study was
extracted at the same laboratory, and were therefore corrected with study site as the batch
variable and tumor-normal status as the biological variable. Following batch correction,
decontamination of batch-corrected counts was applied as previously described at the genus-
level.

16S samples were left uncorrected as these samples did not show evidence of strong batch
effects (Supplementary Figure 1f).

Differential Abundance

Differential abundance was analyzed using the ALDEx2°3 and the ANCOM-BC®* R packages.
Bacterial taxa with prevalence less than 5% were discarded. For tumor versus normal
differential abundance analysis, only subjects with paired tumor and normal lung tissue were
included. For ANCOM-BC analysis, both study site and tumor-normal status were included in
the differential abundance model to adjust for lingering batch effects.

Microbiome Diversity Analyses

Microbiome diversity analyses were performed using the R package vegan. Genus richness was
calculated as the expected number of unique bacterial genera at the specified rarefaction
depths per sequencing modality. Alpha diversity analysis was performed using the Shannon
index. Samples were randomly sampled to the appropriate rarefaction depth 100 times, and
the median alpha diversity per sample over these 100 iterations was used downstream for
alpha diversity calculations.

Beta diversity was calculated using Bray-Curtis distances with 50 random rarefaction sampling
iterations at the previously specified sampling depths. Association of clinical variables with beta
diversity was performed via permutational multivariate ANOVA analysis®°¢, implemented in
the adonis2 function, to find the marginal variance explained by each variable over 999
permutations.

Survival Analyses
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For survival analyses, Cox proportional hazards models were fit with time since diagnosis as the
time scale. Follow-up ended at death (overall survival), administrative censoring, or loss to
follow-up. All survival times were censored at ten years for survival associations. The baseline
hazards were stratified by study site, tumor stage, and age at diagnosis (age>65, age<65).
Tumor stages Il, lll, and IV were combined for more robust inference. Cox proportional hazards
models were further adjusted for age at diagnosis in ten year categories.

For survival associations with individual bacterial abundances, only bacterial genera with at
least 50 reads in RNA-seq in at least ten percent of samples were included (this read cutoff was
relaxed to 10 in 16S and WGS to account for the lower read depth), and read counts were
transformed using center log ratio transformation®” with 0.05 added as pseudo-counts to the
reads matrix.

Statistical Analyses

All statistical analyses were performed in R version 4.5.1. False discovery rates were calculated
using the Benjamini-Hochberg method®® for multiple hypothesis testing correction. For
comparisons of continuous variables, Wilcoxon rank sums tests were employed unless
otherwise noted. Prior to correlating individual bacterial relative abundances, read counts were
transformed per-sample using center log ratio transformation with 0.05 pseudo-counts added.

Meta-analysis of generalized linear models and Cox models for WGS was performed using a
fixed effect model, and p-values were calculated using Fisher's combined probability test. Meta-
analysis of beta-diversity was performed by averaging R? between the two data subsets, and p-
values were calculated using Fisher's combined probability test.

Power calculations
Power for detecting difference between tumor and matched normal tissue samples

For the subject, let Fl; be the measurement of the tumor sample and Fl; be the
measurement of the adjacent normal tissue sample. We tested the null hypothesis that the
measurement does not differ between tumor and normal tissue samples using a paired B-test.
For the @™ subject, define difference 8 = B} — B and let 62 = FZR(E,). Let effect size Bl =
B(@) /B, the expected difference between tumor and normal samples normalized by standard
deviation. The noncentrality parameter (NCP) of the paired t-test B is approximately B = B/,
where Bl is the number of subjects. Since sample size Pl is reasonably large, we use normal
distribution to approximate the power:

(1) BB >0p) =08 >0) + 8@ < —Bp) =@ —0>0; —0) +8(@ — 8 < —Fy — B)
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which is simplified as @ (@ — Bl;) + BI(—B — Bl). Here, Bl is the quantile corresponding to level
a, with a chosen by the Bonferroni correction or Pl = 0.01.

Survival power analysis

For each of the platforms (WGS, RNA-seq, 16S rRNA), we conducted power simulations by
conditioning on the observed distribution of survival times and the fraction of censoring,
assuming non-informative censoring. We assumed that survival times followed a log-normal
distribution, i.e., ~B(B, %), and estimated the parameters i and o2 by maximizing the
log-likelihood function using all available subjects with survival data. We then simulated a
microbiome feature variable Fj;~F(0,1) and generated event times from the proportional
hazards model

(2)  H(Sil z) = Ho(S;) exp(Bz;)

using the inverse probability method described by Bender et al.?°. A random fraction of subjects
was selected for censoring to match the censoring rate observed in the real dataset. We applied
Cox proportional hazards regression to derive the Wald statistic for testing the null hypothesis
Fly: B = 0. This simulation process was repeated 1,000 times, and power was calculated as the
proportion of simulations yielding a p-value below a specified threshold (either Bonferroni-
corrected or p = 0.01).

Identification of tumor somatic alterations

Somatic mutation calling was conducted using our previously established bioinformatics
pipeline®®. We utilized four distinct mutation calling algorithms for tumor-normal/blood paired
analysis, including Strelka?® (v.2.9.10), MuTect°?, MuTect2, and TNscope!?? within Sentieon’s
genomics software(v.202010.01). An ensemble method was employed to integrate the results
from these different callers, followed by additional filtering to minimize false positives. Final
mutation calls for both single nucleotide variants (SNVs) and indels had to meet the following
criteria:

1) read depth >12 in tumor samples and >6 in normal samples

2) variant allele frequency <0.02 in normal samples

3) overall allele frequency (AF) <0.001 in multiple genetic databases, including 1000
Genomes (phase 3 v.5), gnomAD exomes (v.2.1.1), and gnomAD genomes (v.3.0)1%3

For indel calling, only variants identified by at least three algorithms were retained. The
IntOGen pipeline (v.2020.02.0123)%%4, which integrates seven advanced computational
methods, was used with default parameters to detect positive selection signals in the
mutational patterns of driver genes across the cohort.
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The Battenberg algorithm’’ (v.2.2.9) was applied to analyze somatic copy number alterations
(SCNA). Initial SCNA profiles were generated, followed by an evaluation of the clonality of each
segment, purity, and ploidy. SCNA profiles deemed low-quality after manual inspection
underwent a refitting process, requiring new tumor purity and ploidy inputs, either estimated
by ccubel® (v.1.0) or recalculated from local copy number status. The Battenberg refitting
procedures were iteratively executed until the final SCNA profile met manual validation criteria.
GISTIC%® (v.2.0) was used to identify recurrent copy number alterations at the gene level based
on the major clonal copy number for each segmentation. Structural variants (SVs) were
identified using Meerkat'®’ (v.0.189) and Manta (v.1.6.0), applying recommended filtering,
and the union of these two callers was combined to create the final SV dataset.

Tumor genomic driver mutation analysis

To identify driver mutations among the set of recognized driver genes, we applied a
comprehensive and robust strategy, incorporating several key criteria: (a) the presence of
truncating mutations specifically in genes classified as tumor suppressors, (b) the recurrence of
missense mutations in at least 3 samples, (c) mutations labeled as "Likely drivers" with a
boostDM?? score exceeding 0.5, (d) mutations classified as "Oncogenic" or "Likely Oncogenic"
according to OncoKB!®°, (e) mutations previously identified as drivers using TCGA MC3!!1, and
(f) missense mutations deemed "likely pathogenic" in genes annotated as tumor suppressors,
as outlined by Cheng et al'*2. Mutations meeting any one of these criteria were considered
potential driver mutations.

Mutational signature analysis

The methods for mutational signature analysis are as previously described. Briefly,
SigProfilerMatrixGenerator!!® was utilized to generate mutational matrices for all types of
somatic mutations, including single base substitutions (SBS), doublet base substitutions (DBS),
and indels (ID). De novo SBS, DBS, and ID sighatures were extracted using SigProfilerExtractor*
(v1.1.21) with default settings, normalizing to 10,000 mutations, and using the SBS-288, DBS-78,
and ID-83 mutational contexts. Subsequently, de novo extracted signatures were decomposed
into COSMICv3.41> reference signatures based on the GRCh38 reference genome. These
decomposed signatures were assigned to individual samples using SigProfilerAssignment1®
(v0.1.1).

RNA-seq cell-type deconvolution analysis

For evaluation of the immune component of each sample, we used a list of immune-cell marker
genes that were previously benchmarked and found to perform optimally for immune cell
deconvolution in non-small cell lung cancer?”!18, Samples were scored for each cell type using
the median logCPM expression value among all genes within each set of cell-specific markers.
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Data Availability

Whole genome sequencing data used in this study is deposited in the dbGaP database under
accession code phs001697.v2.p1[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs001697.v2.p1]. RNA-seq data used in this study is deposited in the
dbGaP database under accession code phs003955.v1.p1. 16S rRNA gene sequencing data is
deposited in the SRA database under BioProject accession code PRINA1337178.

Code Availability

The bioinformatics pipeline can be accessed at https://github.com/jpmcelderry/Sherlock-
microbiome.
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1155 Table 1. Demographic and clinical features of study subjects

Characteristic 16S N =701 RNAN =661 WGS N =811?

Age At Diagnosis 64(57,72) 64(57,72)  65(58,72)
Unknown 0 0 4

Sex
Female 563 (80%) 529 (80%) 639 (79%)
Male 138 (20%) 132 (20%) 172 (21%)

Ancestry
African (AFR) 2 (0.3%) 0 (0%) 4 (0.5%)
American (AMR) or Mixed 38 (5.4%) 39 (5.9%) 28 (3.5%)
East Asian (EAS) 388 (55%) 354 (54%) 338 (42%)
European (EUR) 272 (39%) 267 (40%) 441 (54%)
Unknown 1 1 0

Study Site
Connecticut, USA 0 (0%) 0 (0%) 22 (2.7%)
Florida, USA 0 (0%) 0 (0%) 11 (1.4%)
Hong Kong 132 (19%) 130 (20%) 113 (14%)
IARC (Serbia, Czech Republic, Romania, Poland, Russia) 204 (29%) 195 (30%) 190 (23%)
Lima, Peru 4 (0.6%) 4 (0.6%) 0 (0%)
Massachusetts, USA 0 (0%) 0 (0%) 26 (3.2%)
Mexico City, Mexico 14 (2.0%) 16 (2.4%) 0 (0%)
Minnesota, USA 12 (1.7%) 13 (2.0%) 13 (1.6%)
New York, USA 12 (1.7%)  11(1.7%) 13 (1.6%)
Nice, France 26 (3.7%) 44 (6.7%) 53 (6.5%)
Quebec, Canada 0 (0%) 0 (0%) 113 (14%)
Taiwan 218 (31%) 202 (31%) 184 (23%)
Toronto, Canada 71 (10%) 39 (5.9%) 68 (8.4%)
Valencia, Spain 8 (1.1%) 7 (1.1%) 5 (0.6%)

Stage

| 407 (61%) 368 (59%) 496 (64%)
[ 115 (17%) 113 (18%) 131 (17%)
I 108 (16%) 107 (17%) 120 (15%)

\Y 38 (5.7%) 39 (6.2%) 30 (3.9%)
Unknown 33 34 34
Histology Composite

Adenocarcinoma 621 (89%) 584 (88%) 695 (86%)
Adenosquamous carcinoma 12 (1.7%) 9 (1.4%) 11 (1.4%)
Carcinoid tumor 23 (3.3%) 23 (3.5%) 58 (7.2%)
Squamous cell carcinoma 36 (5.1%) 36 (5.4%) 34 (4.2%)
Other 9 (1.3%) 9 (1.4%) 13 (1.6%)

IMedian (Q1, Q3); n (%)
1156
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Table 2: Read Depth statistics per sequencing modality and sample type.

Tumor-Normal Status
16S

Tumor

Normal

RNAseq

Tumor

Normal

WGS

Blood

Tumor

Normal

n

701
563

661
542

447
811
365

Main Figure Legends

mean

66,917
57,628

129,635,580
130,148,355

942,996,840
2,348,912,898
941,838,237

median Standard Deviation

61,644
58,308

127,478,501
126,346,728

908,564,834
2,292,893,294
925,300,124

31,947
20,127

38,900,833
37,999,097

189,070,286
330,902,893
166,991,678

Range
Low High
4,024 199,104
5,166 194,827
22,429,409 610,965,375
20,866,863 471,422,274

680,579,372 1,814,647,436
727,878,974 4,382,840,738
659,749,314 2,299,531,502

Figure 1: General overview of the pipeline and dataset. a) Count of samples per combinations

of sequencing platforms, by biospecimen type. b) Overview of the analytical pipeline used for
this study. Bracken abundance estimation was used only with WGS (combining this study and
Zhang et al. 2021) and 16S. After decontamination, read counts above the genus level were
recursively adjusted (Methods). Created in BioRender. McElderry, J. (2025) https://
BioRender.com/8kkrqgu . c) Total reads assigned to different domains and to the human
genome (WGS n=1176; RNA-seq n=1203, 16S n=1264). d) l0gio bacterial reads per million,
including human and other sequences, by sequencing modality and tissue type (WGS n= 811

tumors, 365 normal lung, 447 blood samples; RNA-seq n= 661 tumors, 542 normal lung

samples; 16S n=701 tumors, 563 normal lung samples). e) 10gio absolute bacterial read counts

by sequencing modality and tissue type (WGS n= 811 tumors, 365 normal lung, 447 blood

samples; RNA-seq n= 661 tumors, 542 normal lung samples; 16S n=701 tumors, 563 normal

lung samples). f) Comparison of l0gio per-million genus-level bacterial reads in the WGS dataset
compared to WGS from other studies. Boxplot centers, upper and lower bounds, and whiskers
represent median, upper and lower quartiles, and quartiles +/- 1.5 inter-quartile range,

respectively. WGS = whole genome sequencing; Rna-seq = RNA sequencing; 16S = 16S rRNA

gene sequencing.
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Figure 2: Compositional overview of each dataset after decontamination. a) Overview of the
phylum-level relative abundances for all samples in this dataset, ordered by abundance of
Proteobacteria. b) Mean phylum-level and c) genus-level relative abundances by sequencing
platform and tumor-normal status, including only samples which were sequenced across all
three sequencing modalities. d) Rarefaction curve showing the relationship between read
depth and number of unique bacterial genera observed in 16S, RNA-seq, and WGS datasets
across all tissue types. WGS = whole genome sequencing; RNA-seq = RNA sequencing; 16S = 16S
rRNA gene sequencing.

Figure 3: Tumor-normal, clinical, and demographic associations with the microbiome. a)
ANCOM-BC differential abundance results with Holm method for multiple testing correction,
and b) comparison of Shannon alpha diversity between paired tumor and normal samples using
genus-level 16S data (n=385 tumor-normal pairs) using a two-sided Wilcoxon test. Boxplot
centers, upper and lower bounds, and whiskers represent median, upper and lower quartiles,
and quartiles +/- 1.5 inter-quartile range, respectively. c) ANCOM-BC differential abundance
results with Holm method multiple testing correction, and d) comparison of Shannon alpha
diversity between paired tumor and normal samples using genus-level RNA-seq data (n=525
tumor-normal pairs) using a two-sided Wilcoxon test. Boxplot centers, upper and lower bounds,
and whiskers represent median, upper and lower quartiles, and quartiles +/- 1.5 inter-quartile
range, respectively. e) Genus-level alpha diversity and richness in tumors associated via
generalized linear models with clinical features, adjusted for study site. RNA-seq (n=661), 16S
(n=572), and meta-analyzed WGS (n=704) samples were rarefied to 500, 250, and 100 bacterial
reads respectively. Stage | tumors, adenocarcinoma histology, and European (EUR) ancestry
serve as references. Unadjusted p-values are shown; all tests are non-significant (FDR>0.05)
after multiple testing correction. Points represent regression coefficient, error bars signify
standard error. WGS = whole genome sequencing; RNA-seq = RNA sequencing; 16S = 16S rRNA
gene sequencing; AMR=American; EAS=East Asian.

Figure 4: Survival associations with individual bacterial taxa. a) Cox proportional hazard model
of ten-year survival with RNA-seq bacterial relative abundances including genera with minimum
50 reads in 10% of samples, b) 16S bacterial relative abundances including genera with
minimum 10 reads in 10% of samples, and c) meta-analyzed WGS bacterial relative abundances
including genera with minimum 10 reads in 10% of samples. All analyses were stratified by
study site, age at diagnosis (age>65 or <65), and stage (stage | or stages II-1V), and further
adjusted by histology and age in ten year categories. All associations are not significant
(FDR>0.05) after multiple testing correction. Points represent log Cox hazard ratio, error bars
signify standard error. RNA-seq n = 587 tumor samples, 482 normal samples; 16S n = 488 tumor
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samples, 395 normal samples; WGS n = 647 tumor samples, 375 blood samples. WGS = whole
genome sequencing; Rna-seq = RNA sequencing; 16S = 16S rRNA gene sequencing.
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