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Abstract 85 
 86 
In spite of the growing interest in the microbiome in human cancer, there are currently only 87 
small-scale lung cancer microbiome studies conducted directly on tissue. As part of the 88 
Sherlock-Lung study, we studied the microbiomes of 940 lung cancers (4,090 samples) in never 89 
smokers (LCINS) directly from lung tissue using three data types: 16S rRNA gene sequencing 90 
(16S), whole-genome sequencing (WGS) with paired blood, and RNA-seq. We observe very low 91 
biomass and few microbiome associations in LCINS using 16S and WGS tissue. Using RNA-seq, 92 
we observe more total microbial reads, and decreased relative abundance of several 93 
commensal bacteria at the genus and species levels in tumors relative to paired normal lung 94 
tissue. Among all datasets, we see no consistent associations between the lung tissue 95 
microbiome, or circulating bacterial DNA, and any available demographic and clinical features, 96 
including age, sex, genetic ancestry, second-hand tobacco smoking exposure, LCINS histology, 97 
stage, and overall survival. We also observe no microbiome associations with any human 98 
genomic alterations within the same samples. Every null result should be interpreted with 99 
caution given the possibility of future methodological breakthroughs. However, all together, 100 
using multiple data types in nearly 1,000 patients, we find no substantive role for the lung 101 
cancer microbiome in treatment-naïve LCINS.  102 
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INTRODUCTION 103 
 104 
The human cancer microbiome is a rapidly growing field of research. To date, most major 105 
studies on the human cancer microbiome have focused on organs with high bacterial 106 
abundance, e.g., mouth, stomach, and colon, identifying connections between the microbiome 107 
and cancer incidence or progression. Additionally, several specific microbes have been shown 108 
to produce genotoxins, suggesting a possible role in cancer initiation. These include 109 
Helicobacter pylori, a Group 1 carcinogen which causes stomach cancer1, as well as pks+ 110 
Escherichia coli2–10, Bacteroides fragilis11–15, and Fusobacterium nucleatum16–22, each associated 111 
with colorectal cancer. Resultantly, enthusiasm for the microbiome as a target for cancer early 112 
detection23–25, prevention, and treatment26 has grown significantly in recent years. Despite this, 113 
research on the cancer microbiomes of most organs has been limited, including on the lung. 114 

 115 
Relatively little is known about the lung microbiome even in healthy individuals. Historically, the 116 
lungs have been considered sterile organs due to repeated failure to culture bacteria from lung 117 
samples27. This idea has since been challenged using culture-free sequencing methods. Much of 118 
the current research on the lung microbiome is derived from samples collected via sputum or 119 
bronchoalveolar lavage (BAL). Studies performed on healthy individuals and cancer patients 120 
with samples collected using BAL have characterized the lung microbiome as being similar in 121 
composition to the oral and upper airway microbiomes, albeit at much lower total 122 
abundance28–32. In contrast, small-scale studies conducted on surgically removed tumor and 123 
normal lung tissue - which theoretically precludes contamination from the upper airways33 - 124 
identified much lower proportions of upper airway bacteria34–38. A recent study of the murine 125 
lung microbiome concluded that although both methods may be valid for studying the lung 126 
microbiome, samples collected from BAL fluid versus directly from lung tissue within the same 127 
animals can be distinguished via beta diversity analysis39. 128 
 129 
Alterations in the lung microbiome are connected with several diseases40 such as chronic 130 
obstructive pulmonary disease41–44, asthma45–47, and idiopathic pulmonary fibrosis48. 131 
Furthermore, changes in the lung microbiome of mice has been shown to influence 132 
development of multiple sclerosis in the brain49. Many studies have also identified differences 133 
in the lung microbiomes of healthy versus cancer patients32,36–38,50–54 and tumor versus adjacent 134 
normal tissue34,36–38, and several have found associations with tumor clinical features, such as 135 
histology55, stage34, and progression56. However, these studies are predominantly based on 136 
small sets of patients (on average less than 100 subjects, ranging from 1051 to 17637 subjects 137 
total), resulting in discrepant results. Additionally, most datasets are composed primarily of 138 
smokers, and thus the role of the microbiome specifically in never-smoker lung cancer is largely 139 
unstudied. 140 
 141 
In this study, we used 16S sequencing to analyze the microbiome of 701 surgically removed 142 
treatment-naive lung cancers in never smokers (LCINS) plus 563 tumor-adjacent normal lung 143 
samples, the largest sample collection to date. To further increase the size of our study, we 144 
leveraged an additional 1,623 WGS samples (tumor, normal lung, blood) and 1,203 RNA-seq 145 
samples (tumor, normal lung) collected as part of Sherlock-Lung and investigated bacterial 146 
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reads in these samples. With considerable overlap of subjects between datasets, this study 147 
includes a total of 4,090 samples from 940 cancer patients who were treatment naive at the 148 
time of sample collection. Despite the comprehensive analysis, we found no evidence for 149 
clinically-relevant associations between the composition or diversity of the lung cancer 150 
microbiome and LCINS demographics, tumor characteristics, previous respiratory diseases, 151 
genomic features, and survival or recurrence. 152 
 153 
RESULTS 154 
 155 
Description of study samples  156 
 157 
This study is based on the Sherlock-Lung project57 of LCINS. Briefly, as part of Sherlock-Lung 158 
(hereafter referred to simply as Sherlock), we have analyzed WGS58,59, 16S, and RNA-seq data 159 
from hundreds of LCINS across North and South America, Europe, and Asia, together with 160 
epidemiological, clinical, and morphological features. 161 
 162 
Specifically, we examined the microbiomes of 940 LCINS patients, 740 females and 200 males of 163 
median age 64.7 years, with 639 paired adjacent normal tissue plus 447 WGS blood samples 164 
(Table 1, Supplementary Data 1). Sex was self-reported and confirmed via WGS where available. 165 
Based on WGS-derived genetic ancestry, this cohort includes 441 patients of European ancestry 166 
from the United States, Canada, and Europe; 338 of East Asian ancestry from Hong Kong, 167 
Taiwan, the United States, and Canada; 28 of Native American/Mixed ancestry from Europe and 168 
Canada, plus four of African ancestry from the United States and Canada (Table 1, 169 
Supplementary Data 1). For patients without WGS data, ancestry was self-reported, including 170 
58 patients of East Asian ancestry from Hong Kong, Taiwan, and Canada; 46 of European 171 
ancestry from Europe and the United States; and 24 of Native American/Mixed ancestry (Table 172 
1, Supplementary Data 1). One patient from Canada was of unknown ancestry.  173 
 174 
As is typical in LCINS, the most common histology was adenocarcinomas (n=811), followed by 175 
carcinoid tumors (n=60), squamous cell carcinomas (n=40), and various other tumor types 176 
(n=29) (Table 1, Supplementary Data 1). The majority of tumors (n=522) and normal lung tissue 177 
(n=278) were sequenced using all three approaches: WGS, 16S, and RNA-seq (Figure 1a, 178 
Supplementary Data 1). 179 
 180 
Multi-omic identification of bacterial reads  181 
 182 
Recently, debate has emerged about best practices for microbiome research23,60–62 using next-183 
generation sequencing (NGS) after several methodological errors were identified in a major 184 
pan-cancer study on the cancer microbiome60. These errors resulted in millions of unaligned 185 
human sequences being mis-identified as bacterial, which affected some of the findings of the 186 
original paper62. To avoid assigning human reads to bacterial genomes, as discussed in Gihawi 187 
et al.61, we aligned all reads to the CHM13 T2T genome63 to filter out as many human 188 
sequences as possible prior to taxonomic assignment with Kraken264 (Figure 1b), then extracted 189 
unaligned reads from this re-alignment for use with Kraken2. Following taxonomic assignment, 190 
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we used Bracken65 to adjust read counts at the genus level for both WGS and 16S sequencing, 191 
but chose not to use Bracken for the RNA-seq dataset as Bracken was developed for DNA-based 192 
sequencing (Methods). Taxonomic assignment results are presented in Supplementary Data 2-193 
4. 194 
 195 
Despite rigorous filtering to remove human reads, many unaligned reads in all datasets were 196 
assigned by Kraken2 to the human genome (median 48.1%, 6.4%, 8.3% in RNA-seq, WGS, 16S 197 
respectively) (Figure 1c, Supplementary Data 2-4). These reads likely originate from imperfect 198 
mapping of human61, often repetitive, reads to the human genome. In 16S samples, many 199 
human reads originate from the mitochondrial genome which contains a 16S rRNA gene that 200 
may be amplified off-target in 16S experiments66. RNA-seq samples contained the most human 201 
reads after alignment, perhaps in part due to the relative difficulty of filtering spliced human 202 
RNA sequences via mapping. 203 
 204 
Many reads were of unknown origin (median 4.9%, 86.7%, 55.0% in RNA-seq, WGS, 16S, 205 
respectively), likely originating from sequencing artifacts, short sequences that could not be 206 
confidently assigned, or reads from microbes with incomplete reference genomes. Almost all 207 
taxonomically assigned, non-human reads were bacterial (median 99.9%, 98.7%, 100% among 208 
non-human reads in RNA, WGS, 16S, respectively), thus we focused our downstream analyses 209 
solely on the bacterial component of the datasets. 210 
 211 
We next generated two datasets from the bacterial abundances: one with batch correction 212 
applied using ComBat-Seq, and one without batch correction. Reads without batch correction 213 
were used solely to describe the landscape of the lung cancer microbiome  as batch correction 214 
can, in some cases, greatly inflate the abundances of rare bacteria61. Batch corrected data was 215 
used for all statistical associations between the microbiome and clinical or demographic 216 
features. WGS associations were performed separately for samples sequenced for this study 217 
(n=1,246) and samples from our previous study (n= 377, Zhang et al. 2021)58 to account for a 218 
strong batch effect (Supplementary Figure 1). Results from these two WGS data subsets were 219 
analyzed separately and combined as a meta-analysis downstream. For 16S data, abundances 220 
were not batch corrected as these samples did not show evidence of strong batch effects. 221 
 222 
Both batch corrected and uncorrected abundances were then decontaminated in silico. For 16S 223 
samples, PCR negative controls were used to calculate bacterial contamination fractions with 224 
the SCRuB67 algorithm, using PCR well location information to track well-to-well leakage. The 225 
WGS and RNA-seq datasets were originally collected for studies on human 226 
genomics/transcriptomics and therefore did not have paired negative controls, as this is not 227 
standard for non-metagenomic experiments. Despite this limitation, we sought to include both 228 
datasets as complementary data together with our 16S dataset to corroborate any findings. In 229 
all datasets, we performed literature-based decontamination by removing bacterial genera that 230 
are found to frequently contaminate NGS experiments68 and have not been known to colonize 231 
human microbiomes69(Methods). Removal of reads at the genus level were recursively 232 
propagated70 to higher taxonomic ranks to remove contamination at all levels of the taxonomy. 233 
 234 
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The raw composition of the microbiome at the phylum and genus levels are shown in 235 
Supplementary Figure 2a. Prior to decontamination, we observed minimal correlation between 236 
sequencing platforms within the same samples (Supplementary Figure 2c-f).  Following batch 237 
correction and decontamination, phylum-level relative abundances and genus-level Shannon 238 
alpha diversity were significantly, but weakly, correlated across all datasets (alpha diversity 239 
Pearson R values between 0.15-0.33, phylum-level abundances Pearson R values between 0.0-240 
0.27) (Supplementary Figure 3). Furthermore, within-subject beta diversity accounted for a high 241 
percentage of overall variance among all samples (Permutational Multivariate ANOVA, 999 242 
iterations, p=0.001, R2=0.455; Supplementary Data 5). This indicates that although microbiome 243 
composition and diversity results differ across sequencing modalities, the microbiome 244 
composition per subject, relative to other subjects, is similar across datasets. 245 
 246 
The lung cancer microbiome has low biomass across all data types 247 
 248 
16S samples had the most bacterial reads per million, as expected due to the targeted nature of 249 
16S rRNA sequencing, followed by RNA-seq, and lastly WGS (Figure 1d). After read filtering to 250 
remove contaminants, we observed low absolute bacterial read totals in WGS (median 344, 251 
162, and 1,440 bacterial reads in tumor, adjacent lung, and blood samples, respectively) and 252 
16S sequencing samples (median 730 and 773 bacterial reads in tumor and adjacent normal 253 
tissue, respectively). The median numbers of bacterial reads in RNA-seq samples were 9,080 254 
and 11,053 in tumor and adjacent normal samples, respectively (Figure 1e). Of note, WGS  255 
samples were sequenced to differing depth between tumor (median human genome coverage 256 
87X) and normal lung tissue (median coverage 34x, read depth statistics for all samples 257 
provided in Table 2). We did not use microbiome data from WGS for alpha or beta diversity 258 
comparisons between tumor and normal lung tissue due to this difference, which could bias the 259 
results, and also due to the extremely low bacterial read depth in normal tissue. 260 
 261 
To put these results into context, we compared the read counts of Sherlock WGS samples with 262 
those from the Pan-cancer analysis of whole genomes working group (PCAWG)71 (Figure 1f). We 263 
used the read counts from the PCAWG breast (BRCA), bladder (BLCA), and head and neck 264 
squamous cell carcinoma (HNSC) WGS samples re-analyzed by Gihawi et al61, and re-analyzed 265 
the PCAWG lung cancer WGS (n=96, of which 81 from smokers, not reported in Gihawi et al61). 266 
16S samples were not included in this comparison as no public 16S data both derived from lung 267 
tissue and including total read counts information were available. We found that Sherlock WGS 268 
samples had lower genus-level bacterial reads in comparison to lung and other cancer types. 269 
Differences in DNA extraction and sequencing as well as the different smoking status may 270 
contribute to these findings as PCAWG WGS is known to have batch-dependent bacterial 271 
contamination72 (Figure 1f). 272 
 273 
For downstream statistical tests, RNA-seq samples with less than 500 reads were excluded to 274 
improve the reliability of associations. Due to the considerably lower read depth of 16S and 275 
WGS samples, this read cutoff was relaxed to 250 reads in 16S and 100 reads in WGS to 276 
preserve sample size. For intra-class correlation analyses (phylum-level relative abundances, 277 
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alpha diversity, beta diversity), a cutoff of 250 reads was applied to all datasets to allow for 278 
valid comparisons. 279 
 280 
Microbiome composition across tissue and data types 281 
 282 
Proteobacteria (also known as Pseudomonadota, mean relative abundances per sequencing 283 
modality ranging 36.4 - 67.4%), Actinobacteria (also known as Actinomycetota, mean relative 284 
abundances 15.0 - 21.0%), and Firmicutes (also known as Bacillota, mean relative abundances 285 
14.5 - 31.1%), were the most abundant phyla across all Sherlock datasets and biospecimen 286 
types (Figure 2a). However, their mean relative abundances, particularly that of Firmicutes, 287 
varied substantially across sequencing modalities (Figure 2b). Several bacterial genera were 288 
observed across all three datasets, e.g., Acinetobacter (mean relative abundance 5.9 - 8.6%), 289 
Corynebacterium (12.9 - 13.2%), Pseudomonas (2.7 – 23.9%), Staphylococcus (3.5 - 11.1%), and 290 
Streptococcus (2.3 – 3.9%; Figure 2c, Supplementary Figure 4). Notably, these were all among 291 
the top ten most abundant bacterial genera in a recent 16S sequencing study of 245 lung 292 
tumors (43 never smokers)35 with many negative controls and strict decontamination, thus 293 
demonstrating a degree of concordance between studies. 294 
 295 
Among the three datasets, RNA-seq samples had the highest genus richness of all datasets 296 
regardless of read sampling depth (Figure 2d). 297 
 298 
Comparing the tumor versus normal lung microbiome in 16S data, we identified few 299 
differentially abundant bacteria which were not significant after multiple testing correction 300 
(Figure 3a, Supplementary Figure 5a, Supplementary Data 6), and observed slightly decreased 301 
alpha diversity in tumor samples (mean diversity=1.9) compared to paired normal tissues 302 
(mean diversity=2.0, Wilcoxon p=0.0015, Figure 3b). Using RNA-seq, several bacterial genera 303 
were enriched in normal tissue compared with tumors (Figure 3c, Supplementary Figure 5b, 304 
Supplementary Data 7), and sample alpha diversity was marginally decreased in tumor tissue 305 
relative to paired normal tissues (Wilcoxon p=0.028, mean diversity in tumors=3.03, normal 306 
tissue=3.08) (Figure 3d). Again using RNA-seq, we obtained similar results when we tested 307 
differential abundance of species within the most abundant genera (Acinetobacter, 308 
Corynebacterium, Pseudomonas, Staphylococcus, and Streptococcus): many Corynebacterium 309 
and Staphylococcus species were significantly enriched in normal lung tissue versus tumor 310 
tissue, and several species of Pseudomonas and Acinetobacter were marginally enriched in 311 
tumor tissue versus normal lung tissue when analyzed using ANCOM-BC (Supplementary Figure 312 
5c,d, Supplementary Data 8). 313 
 314 
We performed power calculations to derive the minimum effect sizes achieving 80% statistical 315 
power for detecting tumor/normal differences using either Bonferroni corrected p-value 316 
threshold or using 0.01 as p-value threshold (Methods). For tumor-normal comparisons, the 317 
minimum effect sizes are calculated as 𝛽 = 0.14 for RNA-seq analysis (𝛽 = 3.9𝛽 − 5, Bonferroni 318 
correction, 1279 taxa) or 𝛽 = 0.096 (𝛽 = 0.01), and 𝛽 = 0.23 for 16S sRNA analysis (𝛽 = 2.8𝛽 −319 
4, Bonferroni correction, 141 taxa) or 𝛽 = 0.17 (𝛽 = 0.01). This suggests that we have sufficient 320 
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statistical power to detect tumor-normal differences in the microbiome with modest effect 321 
sizes if they were present in our data. 322 
 323 
We did not compare tumor WGS data with normal lung tissue WGS because of the different 324 
read depth between tumor and normal tissue, as previously stated. 325 
 326 
Microbiome characteristics in relation to demographic and clinical factors 327 
 328 
We tested several factors in association with microbiome features. First, we examined the 329 
relationship between microbiome alpha diversity versus clinical and demographic features. We 330 
observed variation in richness (Kruskal-Wallis, p<2.2e-16) and diversity (Kruskal-Wallis, 331 
p=0.00033) between study sites (Supplementary Figure 6a,b). Other associations in all datasets 332 
were not significant after multiple testing corrections (Figure 3e). Some associations were 333 
nominally significant. In WGS, stage IV tumors had increased genus richness relative to Stage I 334 
tumors (unadjusted p=0.05, β=1.14, 95% confidence interval= [-0.509, 2.79]), and carcinoid 335 
tumors had decreased alpha diversity compared to adenocarcinomas (β= -0.21, unadjusted 336 
p=0.02, 95% confidence interval= [-0.36, -0.06]). In the 16S dataset, Native American/mixed 337 
ancestry patients had decreased tumor alpha diversity relative to European patients 338 
(unadjusted p=0.03, β= -0.26, 95% confidence interval= [-0.50, -0.02]). 339 
 340 
Measuring beta diversity, WGS and 16S datasets showed significant variation according to 341 
sample study site while RNA-seq after batch correction was not significantly associated. The 342 
RNA-seq dataset showed small, significant differences according to tumor-normal status, age at 343 
diagnosis, histology, and vital status, but no differences were observed according to ancestry, 344 
sex, tumor stage, or development of metastases. No clinical and demographic variables were 345 
associated with beta-diversity using 16S or WGS data (Supplementary Figure 6c). 346 
 347 
Recent research has suggested that circulating bacterial DNA in blood may be associated with 348 
clinical outcomes, including in lung cancer23–25. To investigate this hypothesis, we tested 349 
associations between blood microbial diversity measures and lung cancer clinical features. We 350 
correlated relative abundances between paired tumor and blood samples at the phylum level 351 
to test the plausibility of detecting lung bacteria in blood samples. Among the most prevalent 352 
phyla (Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes), only abundance of 353 
phylum Firmicutes (p<2.2e-16, Pearson R=0.5) and Proteobacteria (p=9.1e-05, Pearson R=0.19) 354 
was significantly correlated between tumor and paired blood samples (Supplementary Figure 355 
7a). At the genus level, abundance of Staphylococcus (classified under phylum Firmicutes) was 356 
correlated between blood and tumor samples (p<2.2e-16, Pearson R=0.58). Genus richness and 357 
alpha diversity in blood samples were not associated with any tested clinical features, including 358 
lung cancer stage, histology, risk of recurrence, or vital status (Supplementary Figure 7b), and 359 
beta diversity in blood was associated with sample study sites and weakly associated with vital 360 
status (p=0.026, R2=0.008) and tumor stage (p=0.043, R2=0.02) (Supplementary Figure 7c). 361 
 362 
Notably, using RNA-seq, 16S, and tumor and blood WGS data, we found no associations 363 
between genus-level relative abundances for any bacteria, adjusted by histology and age in ten 364 
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year categories, and overall survival, stratified by study site, age at diagnosis (age>65, age≤65), 365 
and tumor stage (Figure 4). Similarly, no significant associations were observed for bacterial 366 
richness or alpha diversity with overall survival (Supplementary Figure 8). Restricting survival 367 
analyses to lung adenocarcinomas only likewise produced no significant associations 368 
(Supplementary Figure 9).  369 
 370 
We performed power calculations to derive the minimum hazard ratios achieving 80% 371 
statistical power. Using the Bonferroni-corrected p-value thresholds (37 taxa for RNA-seq, 25 372 
taxa for 16S rRNA, and 45 taxa for WGS), the minimum hazard ratio required to achieve 80% 373 
power was approximately 1.34 for all three platforms. When using a p-value threshold of 0.01, 374 
the minimum hazard ratios to achieve 80% power were approximately 1.27 for WGS, 1.30 for 375 
RNA-seq, and 1.29 for 16S rRNA. This indicates that if there were survival associations with 376 
modest effect sizes, we would have had sufficient statistical power to detect them. 377 
 378 
We also tested whether RNA-seq and 16S bacterial richness or diversity was associated with 379 
immune cells by leveraging paired human transcriptomic data plus cell deconvolution methods. 380 
We noted a weak positive correlation between RNA-seq genus richness and log proportion of 381 
Th1 cells in tumor tissue, and a weak negative correlation between 16S Shannon diversity and 382 
log proportion of B-cells in normal tissues. Ultimately, however, we noticed no strong, 383 
consistent trends between datasets (Supplementary Figure 10). 384 
 385 
The microbiome is not associated with human genomic features 386 
 387 
We took advantage of the associated human whole-genome58,59 data from these same samples 388 
and investigated whether major driver mutations or fusions, copy number alterations, kataegis, 389 
or mutational signatures in the human lung cancer genome were associated with microbiome 390 
richness and alpha diversity, adjusted for study site differences (Supplementary Data 9, 391 
Supplementary Figure 11a,b). All associations between the microbiome and genomic features 392 
were not significant after multiple testing correction (Supplementary Figure 11c). 393 
 394 
DISCUSSION 395 
 396 
In the largest study of the LCINS microbiome to date using 16S sequencing, together with WGS 397 
and RNA-seq, we observed very low microbial abundance across over 4,000 samples, and little 398 
evidence of association between the composition or diversity of the lung cancer microbiome 399 
and LCINS tumor characteristics, genomic features, and survival. 400 
 401 
The bulk of research on the lung microbiome to date is derived from samples collected via 402 
bronchoalveolar lavage (BAL), and the consensus of these studies is that the healthy lung 403 
microbiome is composed mainly of oral and tracheal commensals (e.g., genera Streptococcus 404 
15.7 - 38.7%, Prevotella 5 - 26.5%, Veillonella 3.8 - 4.0%, Haemophilus 0.02 - 15.5%, and 405 
Neisseria 6.5 - 9.3% among two BAL-based lung cancer studies50,52, and among the highest 406 
abundance in several other studies in cancer 32,53 and non-cancer28–30 patients). While these 407 
genera were present in our study, they summed to a small minority of the overall microbiome 408 
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composition in all three data types (mean total relative abundance 4.0% - 5.8%). Instead, the 409 
highest abundance genera across all data types in tumors and normal lung were Acinetobacter, 410 
Corynebacterium, Pseudomonas, and Staphylococcus. These findings closely agree with a 411 
recent, highly decontaminated 16S sequencing dataset of 245 lung tumors (43 never smokers)35 412 
in which these genera were all among the top ten most abundant after decontamination. In 413 
blood WGS data, the most abundant bacteria were Methylobacterium, Ralstonia, Burkholderia, 414 
and Pseudomonas. Of note, abundance of phyla Firmicutes and Proteobacteria and genus 415 
Staphylococcus were correlated between tumor samples and paired blood. These correlations 416 
may suggest migration of these bacteria from the lung to the blood, although translocation 417 
from other organs and/or contaminations that could not be removed with the current 418 
approaches are always possible contributing factors. Nonetheless, we ultimately found no 419 
clinical associations with circulating bacteria. 420 
 421 
RNA-seq data showed minor differences between tumor samples and paired adjacent normal 422 
tissue in alpha or beta diversity, and an enrichment of several human commensals in normal 423 
tissue (e.g., Corynebacterium, Anaerococcus, Finegoldia). Tumor tissues had slightly decreased 424 
alpha diversity compared to normal tissues in both the 16S and RNA-seq datasets. However, we 425 
noted no other robust associations of microbial abundances, richness, alpha diversity, or beta 426 
diversity with any available clinical features or patient survival, no associations between the 427 
microbiome and known tumor genomic features, and no consistent trends in microbiome-428 
immune system crosstalk. 429 
 430 
There are several limitations in this study. First, our normal lung tissue samples are only from 431 
lung cancer patients since lung tissue from healthy individuals can rarely be collected. Thus, we 432 
may have missed differences in the lung microbiome between healthy individuals and cancer 433 
patients. This study provides a snapshot of the microbiome at the time of tumor resection and 434 
our samples were treatment-naïve, so we could not investigate the role of microbiome on 435 
treatment response. This study lacks negative controls for RNA-seq and WGS datasets which 436 
limits identification of contaminating bacteria in these datasets. However, incomplete 437 
decontamination is more likely to result in false-positive than false-negative associations61,73. 438 
Furthermore, we leveraged state-of-the-art decontamination algorithms using negative 439 
controls in our 16S dataset and likewise produced no significant associations. Lastly, removing 440 
additional bacteria would unlikely result in positive associations given that we already have 441 
sufficient statistical power to detect associations with even modest effect sizes. 442 
 443 
Every null result should be interpreted with caution. As methods for bacterial sequencing and 444 
microbiome analysis evolve to better accommodate low biomass samples, it is possible that a 445 
role for the lung microbiome in cancer could be found in the future. But, as it stands, after 446 
applying multi-omics datasets with rigorous quality control and state-of-the-art analytical 447 
methods in 4,090 samples across 940 patients, the lung cancer microbiome does not appear to 448 
have a dominant role in LCINS. 449 
 450 
METHODS 451 
 452 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

Ethics declaration 453 
 454 
The NCI exclusively received de-identified samples and data from collaborating centers, had no 455 
direct interaction with study subjects, and did not use or generate any identifiable private 456 
information, therefore the Sherlock-Lung study was classified as “Not Human Subject Research 457 
(NHSR)” according to the Federal Common Rule (45 CFR 46; eCFR.gov). Some tissue specimens 458 
were obtained from the IUCPQ Tissue Bank, site of the Quebec Respiratory Health Network 459 
Biobank or the FQRS (www.tissuebank.ca) in compliance with Institutional Review Board-460 
approved management modalities. Some samples and data from patients included in this study 461 
were provided by the INCLIVA Biobank (PT17/0015/0049), integrated in the Spanish National 462 
Biobanks Network and in the Valencian Biobanking Network, and they were processed 463 
following standard operating procedures with the appropriate approval of the Ethics and 464 
Scientific Committees. All collaborating centers obtained informed consent for publication of 465 
human data from participants under protocols approved by their respective Institutional 466 
Review Boards (IRBs). 467 
 468 
Sample Collection and Handling 469 
 470 
Samples were collected as described in previous Sherlock-Lung publications57,58. We collected 471 
tumor samples from 940 patients with histologically confirmed lung cancer from various 472 
geographical regions: 220 from Taiwan; 208 from International Agency for Research on Cancer, 473 
Lyon, France, collected in Russia, Czech Republic, Romania, Serbia, and Poland; 133 from Hong 474 
Kong; 113 from Quebec City, Canada; 78 from Nice, France; 72 from Toronto, Canada; 26 from 475 
Massachusetts, USA; 22 from Connecticut, USA; 18 from Mexico City, Mexico; 13 from New 476 
York, USA; 13 from Minnesota, USA; 11 from Florida, USA; 9 from Valencia, Spain; and 4 from 477 
Lima, Peru. Fresh frozen tumor tissue and matched whole blood samples or fresh frozen normal 478 
lung tissue (collected at least 3 cm away from the tumor when possible) were obtained from 479 
these treatment-naïve patients. Genetic ancestry information was defined using WGS by 480 
clustering with the 1000 Genome Project (1KGR) reference panel with VerifyBamID274. In the 481 
absence of WGS data, we relied on self-reported ancestry. For each patient, we reported the 482 
geographical location where the cancer was diagnosed. 483 
 484 
We adhered to strict sample selection criteria: 485 

1) Contamination and relatedness: Cross-sample contamination was kept below 1% using 486 
Conpair75, and relatedness was maintained below 0.2 using Somalier76. 487 

2) Copy number analysis: Subjects with abnormal copy number profiles in normal samples 488 
were excluded, as determined by Battenberg77. 489 

3) Mutational signatures: Tumor samples exhibiting mutational signatures SBS7 (associated 490 
with ultraviolet light exposure) or SBS31 (associated with platinum chemotherapy) were 491 
excluded. 492 

4) WGS quality control: Tumor samples with a total genomic alteration count of <100 or 493 
<1,000 and an NRPCC (number of reads per clonal copy) <10 were excluded. 494 
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These stringent criteria were consistently applied to ensure data robustness and reliability in 495 
the Sherlock-Lung study.  496 
 497 
Whole-genome sequencing 498 
 499 
WGS library construction was carried out as previously reported58,59. Briefly, frozen tumor 500 
tissue along with matched blood or normal tissue samples were immediately placed into 1ml of 501 
0.2 mg/ml Proteinase K (Qiagen) in DNA lysis buffer (10 mM Tris-Cl, pH 8.0; 0.1 M EDTA, pH 8.0; 502 
0.5% SDS) and incubated for 24 hours at 56°C with shaking at 850 rpm in a Thermomixer R 503 
(Eppendorf) until completely lysed. Genomic DNA was extracted from fresh frozen tissue using 504 
the QIAmp DNA Mini Kit (Qiagen) following the manufacturer's protocol. Each sample was 505 
eluted in 200 μl AE buffer, and DNA concentration was measured using a Nanodrop 506 
spectrophotometer. All DNA samples were aliquoted and stored at −80°C until needed. 507 
 508 
DNA was quantified using the QuantiFluor® dsDNA System (Promega Corporation, USA). DNA 509 
standardized to a concentration of 25 ng/μl and underwent fragment analysis using the 510 
AmpFLSTR™ Identifiler™ PCR Amplification Kit (ThermoFisher Scientific, USA). DNA samples 511 
were required to meet minimum mass and concentration thresholds for each assay and show 512 
no evidence of contamination or profile discordance in the Identifiler assay. Samples that met 513 
these criteria were aliquoted at the appropriate mass needed for downstream assay 514 
processing. 515 
 516 
The Broad Institute (https://www.broadinstitute.org) performed WGS on the Novaseq6000 517 
platform using Illumina protocols for 2x150bp paired-end sequencing in 1246 (this study) and 518 
the Illumina HiSeq X platform (n=377) for our previous publication58 . FASTQ files were 519 
generated post-Illumina base-calling. These paired FASTQ files were converted into unmapped 520 
BAM files using the GATK pipeline (https://github.com/gatk-workflows/seq-format-conversion) 521 
and were then processed using GATK on the cloud-based TERRA workspaces platform 522 
(https://app.terra.bio). The sequencing data was then aligned to the human reference genome 523 
GATK-GRCh38, and the resulting aligned BAM files were transferred to the NIH HPC system 524 
(https://hpc.nih.gov) for downstream analyses. 525 
 526 
RNA sequencing 527 
 528 
RNA-seq was performed using the Illumina NovaSeq6000 platform and Roche KAPA RNA 529 
HyperPrep with RiboErase protocol, generating 2x151bp paired-end reads. For human 530 
transcriptomics analyses, FASTQ files were aligned to the human reference genome GATK-531 
GRCh38 using STAR78 (v2.7.3), and were quantified using HTSeq(v2.0.4)79 and GENCODE v3580. 532 
Counts data were batch corrected with ComBat-Seq81, followed by TMM normalization using 533 
DESeq282.  534 

 535 
16S Microbiome Sequencing 536 
 537 
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For each sample, 100 ng of DNA, utilizing Quant-iT PicoGreen dsDNA (Thermo Fisher Scientific, 538 
Waltham, MA) quantitation, is split into 50 ng (5 ng/uL) aliquots for two separate PCR reactions.  539 
PCR was performed in 25 uL reaction volumes consisting of:  50 ng (10 uL) of DNA, 10 uL of 2X 540 
PlatinumTM Hot Start PCR Master Mix (ThermoFisher Scientific), 3 uL of MBG Water, and 2 uL 541 
of the 5 µM 16S rRNA v4 (515f-806r) barcoded primer mix, comprised of equimolar forward and 542 
reverse primer pairs targeting the V4 region of the 16S rRNA gene83. Controls without input 543 
DNA were also included for PCR with the same reaction volumes, including a ‘water’ control 544 
with 10uL of MBG water in place of 10uL of DNA, and a ‘no template’ control with no DNA or 545 
added water.  515f forward PCR primer sequence was: 546 
AATGATACGGCGACCACCGAGATCTACAC TATGGTAATT GT GTGCCAGCMGCCGCGGTAA 547 
 548 
consisting of the 5’ Illumina adapter, forward primer pad, forward primer linker and forward 549 
primer. 806r reverse PCR primer sequence was: 550 
 551 
CAAGCAGAAGACGGCATACGAGAT XXXXXXXXXXXX AGTCAGTCAG CC 552 
GGACTACHVGGGTWTCTAAT 553 
 554 
consisting of the reverse complement of the 3’ Illumina adapter, Golay barcode (12 bp barcode 555 
identifier generated specifically for this primer set to support multiplexing of samples), reverse 556 
primer pad, reverse primer linker and reverse primer (Integrated DNA Technologies, Coralville, 557 
IA). Thermal cycling was performed with the following PCR conditions: 94˚ C hold for 3 min, 558 
denature at 94˚ C for 45 s, anneal at 50˚ C for 1 min, extend at 72˚ C for 1 min 30 s for 25 cycles, 559 
followed by a 72˚ C hold for 10 min. 560 
 561 
Sample PCR replicates were then pooled and purified using a 1:1 AMPure XP (Beckman Coulter 562 
Genomics, Danvers, MA) ratio, performing the final elution in 30 uL of Buffer EB (Qiagen, 563 
Germantown, MD).  Amplified sample libraries were quantified using Quant-iT PicoGreen 564 
dsDNA Reagent (ThermoFisher Scientific, Waltham, MA) and up to 192, with unique barcoded 565 
adapters, were combined in equal amounts (100 ng each) and pools normalized to 10 nM with 566 
Buffer EB for pooled sequencing.  567 
 568 
Sequencing was performed at the Cancer Genomics Research Laboratory using the Illumina 569 
MiSeq v2, 500 cycle kit (Illumina, San Diego, CA, USA) following the manufacturer’s protocol84 570 
with the following modifications: Pooled libraries were diluted to 5 pM in a serial dilution, and 571 
25% denatured 5pM PhiX was spiked-in and added to the “Load Sample” well. 3.4ul of Index 572 
Sequencing Primer at 100mM, 3.4ul of Read 1 Sequencing primer at 100mM and 3.4ul of Read 573 
2 Sequencing Primer at 100uM was added to wells 13, 12 and 14 of the MiSeq sequencing 574 
cartridge. 2x251 Paired end sequencing was performed on the MiSeq, with up to 192 samples 575 
per run. 576 
 577 
Taxonomic Classification of Non-Human Reads 578 
 579 
For classification of RNA-seq and WGS, unaligned read pairs were extracted from GATK-580 
GRCh38-aligned bam files. To remove additional human reads, these reads were then realigned 581 
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to the CHM13 T2T genome reference63, using bwa-mem85 (v0.7.17) to align WGS and 16S reads, 582 
and hisat86(v2.2.2.1-ngs3.0.1) to align RNA-seq reads. Unaligned read pairs were extracted from 583 
this alignment. Reads were then trimmed using Trimmomatic87 to remove trailing bases with 584 
average quality score less than 10 using a sliding window. Reads smaller than 45bp after 585 
trimming were discarded. 586 
 587 
Taxonomic assignment of reads was performed with Kraken264 (v2.1.2) using the Kraken2 588 
standard database plus fungal and protozoan genomes downloaded on June 5th, 2023. For 589 
taxonomic assignment of RNA-seq reads the human transcriptome was also included in the 590 
database to detect unaligned human reads spanning splice junctions. WGS read counts at the 591 
genus level were adjusted using Bracken65 with a minimum of 2 reads per genus required prior 592 
to readjustment, and genera with single reads were discarded. Bacterial genera with fewer than 593 
5 assigned reads in RNA-seq samples were discarded to remove false-positive assignments. 594 
Bracken was not used to adjust RNA-seq read counts as we reasoned that Bracken’s genome 595 
uniqueness statistic assumes roughly even genome coverage which may be violated in cases 596 
where specific bacterial transcripts are highly upregulated. 597 
 598 
Reads from 16S rRNA gene sequencing were taxonomically classified with Kraken2 using a 599 
Kraken2 database created from downloaded 16S gene sequences from NCBI plus human 600 
genome GRCh38.p14. This database has the advantage of using identical taxonomies with the 601 
Kraken2 standard database, which facilitates comparison between sequencing platforms. 16S 602 
sequences were assigned with Kraken2 using a confidence threshold of 0.02 due to the high 603 
degree of similarity between 16S rRNA genes at the genus level. Genus-level read counts were 604 
then adjusted using Bracken65 (v2.8) with a requirement of two reads per genus prior to 605 
readjustment. 606 
 607 
In silico sequencing and Kraken2 confidence threshold identification 608 
 609 
Using InSilicoSeq88(v1.0), one million HiSeq reads were simulated from GATK-GRCh38 with 610 
uniform coverage. These reads were mapped back to GATK-GRCh38 using bwa-mem85(v0.7.17), 611 
then unaligned reads were extracted and pooled with 50,000 total reads simulated in the same 612 
manner from the genomes of eleven human-associated bacteria: Escherichia coli (ASM584v2), 613 
Pseudomonas aeruginosa (ASM676v1), Prevotella melaninogenica (ASM14440v1), Rothia 614 
mucilaginosa (ASM17561v1), Haemophilus parainfluenzae (ASM19140v1), Klebsiella 615 
pneumoniae (ASM24018v2), Staphylococcus epidermidis (ASM609437v1), Moraxella osloensis 616 
(ASM155395v1), Cutibacterium acnes (ASM37670v1), Streptococcus oralis (46338_H01), and 617 
Corynebacterium tuberculostearicum (ASM1672836v1). These reads were taxonomically 618 
assigned using Kraken2 with default settings, and the percentage confidence with which each 619 
read was classified was calculated. A confidence threshold of 10% was chosen as, at this level, 620 
all simulated bacterial species were identifiable and most false-positive classifications would be 621 
excluded (Supplementary Figure 12). 622 
 623 
Decontamination 624 
 625 
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16S sequencing samples were decontaminated on a plate-by-plate basis using the SCRuB 626 
algorithm67 with default parameters and PCR well location information to track well leakage 627 
(Supplementary Figure 13).  628 
 629 
For WGS, previous studies have used paired blood samples from whole-genome sequencing 630 
experiments to flag contaminants under the assumption that tissue-associated microbes should 631 
be statistically more prevalent in tissue compared to paired blood70. Under this hypothesis, 632 
bacteria which are equally prevalent in blood and in paired tissue would be considered 633 
contamination. However, recent research on the human blood microbiome, with special 634 
attention paid to contaminant control, has indicated that the blood contains low levels of 635 
transient bacterial DNA, including from commensals previously associated with the oral/lung 636 
microbiomes89. Further, circulating microbial DNA, likely from tumor tissue, has been suggested 637 
as a biomarker for lung cancer detection24. Finally, low bacterial read depth in the WGS samples 638 
greatly reduces the overall sensitivity of such a comparison. Thus, we chose not to use this 639 
method for decontamination in this study. Other decontamination methods, such as heuristic-640 
based approaches89 or the popular decontam90 algorithm were considered for the WGS and 641 
RNA-seq datasets. However, assumptions made by the frequency-based method of decontam 642 
are not valid in low-biomass environments90. 643 
 644 
In all datasets, bacterial genera identified as frequent NGS contaminants were removed using a 645 
list compiled by Salter et al.68, and cross-referenced with a list of human-associated bacterial 646 
pathogens69. Bacterial genera identified as frequent NGS contaminators that encompassed two 647 
or more human-associated species were rescued to avoid discarding possibly true-positive 648 
reads. All other frequent NGS contaminators were discarded (Supplementary Data 10). 649 
 650 
Genus Cutibacterium was also removed after reviewing the data. Cutibacterium is one of the 651 
most common skin commensals and a frequent contaminator of NGS experiments68. 652 
Cutibacterium was universally prevalent and highly abundant in our RNA-seq and WGS 653 
datasets, but infrequently observed in our 16S sequencing samples. Its removal from the WGS 654 
dataset considerably improved alpha diversity correlations and composition correlations 655 
between samples sequenced via both WGS and 16S sequencing. Furthermore, a recent lung 656 
cancer microbiome study with many negative controls showed minimal presence of 657 
Cutibacterium in lung tissue after decontamination35. For these reasons, Cutibacterium was 658 
identified as a likely contaminant and removed from the dataset. Several other skin-associated 659 
bacteria, such as Corynebacterium and Staphylococcus, did not share these properties and were 660 
therefore not removed from the dataset: they were prevalent across all datasets, they were 661 
observed in the same decontaminated lung microbiome dataset referenced above35, and they 662 
are additionally associated with the nasal microbiome91 and, more generally, humid 663 
microenvironments92. 664 
 665 
After decontamination at the genus level, reads were then adjusted at higher levels in the 666 
taxonomy as described by Dohlman et al.70 Briefly, the number of reads assigned to a given 667 
bacterial OTU was multiplied by the percentage of non-contaminant reads at the next lowest 668 
taxonomic level within that OTU (e.g. family level reads are adjusted by multiplying the number 669 
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of reads assigned to family X by the proportion of genus-level, non-contaminant reads within 670 
family X). This process was used recursively to decontaminate from the family level to the top 671 
of the taxonomy. 672 
 673 
Batch Correction 674 
 675 
WGS and RNA-seq genus- and phylum-level raw abundances (i.e. with no decontamination 676 
applied) were corrected to remove batch effects using Combat-Seq. Prior to batch correction, 677 
bacterial OTUs with prevalence less than 1% were removed in both datasets. For WGS, DNA 678 
extraction batch was used as the adjustment variable, and no biological variable was set as DNA 679 
extraction batch was partially confounded with biosample type. All RNA for this study was 680 
extracted at the same laboratory, and were therefore corrected with study site as the batch 681 
variable and tumor-normal status as the biological variable. Following batch correction, 682 
decontamination of batch-corrected counts was applied as previously described at the genus-683 
level. 684 
 685 
16S samples were left uncorrected as these samples did not show evidence of strong batch 686 
effects (Supplementary Figure 1f). 687 
 688 
Differential Abundance 689 
 690 
Differential abundance was analyzed using the ALDEx293 and the ANCOM-BC94 R packages. 691 
Bacterial taxa with prevalence less than 5% were discarded. For tumor versus normal 692 
differential abundance analysis, only subjects with paired tumor and normal lung tissue were 693 
included. For ANCOM-BC analysis, both study site and tumor-normal status were included in 694 
the differential abundance model to adjust for lingering batch effects. 695 
 696 
Microbiome Diversity Analyses 697 
 698 
Microbiome diversity analyses were performed using the R package vegan. Genus richness was 699 
calculated as the expected number of unique bacterial genera at the specified rarefaction 700 
depths per sequencing modality. Alpha diversity analysis was performed using the Shannon 701 
index. Samples were randomly sampled to the appropriate rarefaction depth 100 times, and 702 
the median alpha diversity per sample over these 100 iterations was used downstream for 703 
alpha diversity calculations. 704 
 705 
Beta diversity was calculated using Bray-Curtis distances with 50 random rarefaction sampling 706 
iterations at the previously specified sampling depths. Association of clinical variables with beta 707 
diversity was performed via permutational multivariate ANOVA analysis95,96, implemented in 708 
the adonis2 function, to find the marginal variance explained by each variable over 999 709 
permutations. 710 
 711 
Survival Analyses 712 
 713 
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For survival analyses, Cox proportional hazards models were fit with time since diagnosis as the 714 
time scale. Follow-up ended at death (overall survival), administrative censoring, or loss to 715 
follow-up. All survival times were censored at ten years for survival associations. The baseline 716 
hazards were stratified by study site, tumor stage, and age at diagnosis (age>65, age≤65). 717 
Tumor stages II, III, and IV were combined for more robust inference. Cox proportional hazards 718 
models were further adjusted for age at diagnosis in ten year categories. 719 
 720 
 For survival associations with individual bacterial abundances, only bacterial genera with at 721 
least 50 reads in RNA-seq in at least ten percent of samples were included (this  read cutoff was 722 
relaxed to 10 in 16S and WGS to account for the lower read depth), and read counts were 723 
transformed using center log ratio transformation97 with 0.05 added as pseudo-counts to the 724 
reads matrix. 725 
 726 
Statistical Analyses 727 
 728 
All statistical analyses were performed in R version 4.5.1. False discovery rates were calculated 729 
using the Benjamini-Hochberg method98 for multiple hypothesis testing correction. For 730 
comparisons of continuous variables, Wilcoxon rank sums tests were employed unless 731 
otherwise noted. Prior to correlating individual bacterial relative abundances, read counts were 732 
transformed per-sample using center log ratio transformation with 0.05 pseudo-counts added.  733 
 734 
Meta-analysis of generalized linear models and Cox models for WGS was performed using a 735 
fixed effect model, and p-values were calculated using Fisher's combined probability test. Meta-736 
analysis of beta-diversity was performed by averaging R2 between the two data subsets, and p-737 
values were calculated using Fisher's combined probability test. 738 
 739 
Power calculations 740 
 741 
Power for detecting difference between tumor and matched normal tissue samples 742 
 743 
For the 𝛽𝛽𝛽 subject, let 𝛽𝛽

+ be the measurement of the tumor sample and 𝛽𝛽
− be the 744 

measurement of the adjacent normal tissue sample. We tested the null hypothesis that the 745 
measurement does not differ between tumor and normal tissue samples using a paired 𝛽-test. 746 

For the 𝛽𝛽𝛽 subject, define difference 𝛿𝛽 = 𝛽𝛽
+ − 𝛽𝛽

− and let 𝜎̂2 = 𝛽𝛽𝛽(𝛽𝛽). Let effect size 𝛽 =747 
𝛽(𝛽)/𝛽, the expected difference between tumor and normal samples normalized by standard 748 

deviation. The noncentrality parameter (NCP) of the paired t-test 𝛽 is approximately 𝛽 = 𝛽√𝛽, 749 
where 𝛽 is the number of subjects. Since sample size 𝛽 is reasonably large, we use normal 750 
distribution to approximate the power: 751 
 752 
(1)  𝛽(|𝛽| > 𝛽𝛽) = 𝛽(𝛽 > 𝛽𝛽) + 𝛽(𝛽 < −𝛽𝛽) = 𝛽(𝛽 − 𝛽 > 𝛽𝛽 − 𝛽) + 𝛽(𝛽 − 𝛽 < −𝛽𝛽 − 𝛽) 753 
 754 
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which is simplified as 𝛷(𝛽 − 𝛽𝛽) + 𝛽(−𝛽 − 𝛽𝛽). Here, 𝛽𝛽 is the quantile corresponding to level 755 
𝛼, with 𝛼 chosen by the Bonferroni correction or 𝛽 = 0.01. 756 
 757 
Survival power analysis 758 
 759 

For each of the platforms (WGS, RNA-seq, 16S rRNA), we conducted power simulations by 760 
conditioning on the observed distribution of survival times and the fraction of censoring, 761 
assuming non-informative censoring. We assumed that survival times followed a log-normal 762 

distribution, i.e., 𝛽𝛽𝛽 𝛽 ~𝛽(𝛽, 𝛽2), and estimated the parameters 𝜇 and 𝜎2 by maximizing the 763 

log-likelihood function using all available subjects with survival data. We then simulated a 764 
microbiome feature variable 𝛽𝛽~𝛽(0,1) and generated event times from the proportional 765 
hazards model  766 

(2) 𝐻(𝑆𝑖| 𝑧𝑖) = 𝐻0(𝑆𝑖) 𝑒𝑥𝑝(𝛽𝑧𝑖)  767 

using the inverse probability method described by Bender et al.99. A random fraction of subjects 768 
was selected for censoring to match the censoring rate observed in the real dataset. We applied 769 
Cox proportional hazards regression to derive the Wald statistic for testing the null hypothesis 770 
𝛽0: 𝛽 = 0. This simulation process was repeated 1,000 times, and power was calculated as the 771 
proportion of simulations yielding a p-value below a specified threshold (either Bonferroni-772 
corrected or p = 0.01). 773 

 774 
Identification of tumor somatic alterations 775 
 776 
Somatic mutation calling was conducted using our previously established bioinformatics 777 
pipeline58. We utilized four distinct mutation calling algorithms for tumor-normal/blood paired 778 
analysis, including Strelka100 (v.2.9.10), MuTect101, MuTect2, and TNscope102 within Sentieon’s 779 
genomics software(v.202010.01). An ensemble method was employed to integrate the results 780 
from these different callers, followed by additional filtering to minimize false positives. Final 781 
mutation calls for both single nucleotide variants (SNVs) and indels had to meet the following 782 
criteria:  783 

1) read depth >12 in tumor samples and >6 in normal samples 784 
2) variant allele frequency <0.02 in normal samples 785 
3) overall allele frequency (AF) <0.001 in multiple genetic databases, including 1000 786 

Genomes (phase 3 v.5), gnomAD exomes (v.2.1.1), and gnomAD genomes (v.3.0)103 787 

For indel calling, only variants identified by at least three algorithms were retained. The 788 
IntOGen pipeline (v.2020.02.0123)104, which integrates seven advanced computational 789 
methods, was used with default parameters to detect positive selection signals in the 790 
mutational patterns of driver genes across the cohort. 791 
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 792 
The Battenberg algorithm77 (v.2.2.9) was applied to analyze somatic copy number alterations 793 
(SCNA). Initial SCNA profiles were generated, followed by an evaluation of the clonality of each 794 
segment, purity, and ploidy. SCNA profiles deemed low-quality after manual inspection 795 
underwent a refitting process, requiring new tumor purity and ploidy inputs, either estimated 796 
by ccube105 (v.1.0) or recalculated from local copy number status. The Battenberg refitting 797 
procedures were iteratively executed until the final SCNA profile met manual validation criteria. 798 
GISTIC106 (v.2.0) was used to identify recurrent copy number alterations at the gene level based 799 
on the major clonal copy number for each segmentation. Structural variants (SVs) were 800 
identified using Meerkat107 (v.0.189) and Manta108 (v.1.6.0), applying recommended filtering, 801 
and the union of these two callers was combined to create the final SV dataset. 802 
 803 
Tumor genomic driver mutation analysis 804 
 805 
To identify driver mutations among the set of recognized driver genes, we applied a 806 
comprehensive and robust strategy, incorporating several key criteria: (a) the presence of 807 
truncating mutations specifically in genes classified as tumor suppressors, (b) the recurrence of 808 
missense mutations in at least 3 samples, (c) mutations labeled as "Likely drivers" with a 809 
boostDM109 score exceeding 0.5, (d) mutations classified as "Oncogenic" or "Likely Oncogenic" 810 
according to OncoKB110, (e) mutations previously identified as drivers using TCGA MC3111, and 811 
(f) missense mutations deemed "likely pathogenic" in genes annotated as tumor suppressors, 812 
as outlined by Cheng et al112. Mutations meeting any one of these criteria were considered 813 
potential driver mutations. 814 
 815 
Mutational signature analysis 816 
 817 
The methods for mutational signature analysis are as previously described59. Briefly, 818 
SigProfilerMatrixGenerator113 was utilized to generate mutational matrices for all types of 819 
somatic mutations, including single base substitutions (SBS), doublet base substitutions (DBS), 820 
and indels (ID). De novo SBS, DBS, and ID signatures were extracted using SigProfilerExtractor114 821 
(v1.1.21) with default settings, normalizing to 10,000 mutations, and using the SBS-288, DBS-78, 822 
and ID-83 mutational contexts. Subsequently, de novo extracted signatures were decomposed 823 
into COSMICv3.4115 reference signatures based on the GRCh38 reference genome. These 824 
decomposed signatures were assigned to individual samples using SigProfilerAssignment116 825 
(v0.1.1). 826 
 827 
RNA-seq cell-type deconvolution analysis 828 
 829 
For evaluation of the immune component of each sample, we used a list of immune-cell marker 830 
genes that were previously benchmarked and found to perform optimally for immune cell 831 
deconvolution in non-small cell lung cancer117,118. Samples were scored for each cell type using 832 
the median logCPM expression value among all genes within each set of cell-specific markers. 833 
 834 
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Data Availability 835 
 836 
Whole genome sequencing data used in this study is deposited in the dbGaP database under 837 
accession code phs001697.v2.p1[https://www.ncbi.nlm.nih.gov/projects/gap/cgi-838 
bin/study.cgi?study_id=phs001697.v2.p1]. RNA-seq data used in this study is deposited in the 839 
dbGaP database under accession code phs003955.v1.p1. 16S rRNA gene sequencing data is 840 
deposited in the SRA database under BioProject accession code PRJNA1337178. 841 
 842 
Code Availability 843 
 844 
The bioinformatics pipeline can be accessed at https://github.com/jpmcelderry/Sherlock-845 
microbiome. 846 
 847 
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Table 1. Demographic and clinical features of study subjects 1155 
Characteristic 16S N = 7011 RNA N = 6611 WGS N = 8111 

Age At Diagnosis 64 (57, 72) 64 (57, 72) 65 (58, 72) 

    Unknown 0 0 4 

Sex    

    Female 563 (80%) 529 (80%) 639 (79%) 

    Male 138 (20%) 132 (20%) 172 (21%) 

Ancestry    

    African (AFR) 2 (0.3%) 0 (0%) 4 (0.5%) 

    American (AMR) or Mixed 38 (5.4%) 39 (5.9%) 28 (3.5%) 

    East Asian (EAS) 388 (55%) 354 (54%) 338 (42%) 

    European (EUR) 272 (39%) 267 (40%) 441 (54%) 

    Unknown 1 1 0 

Study Site    

    Connecticut, USA 0 (0%) 0 (0%) 22 (2.7%) 

    Florida, USA 0 (0%) 0 (0%) 11 (1.4%) 

    Hong Kong 132 (19%) 130 (20%) 113 (14%) 

    IARC (Serbia, Czech Republic, Romania, Poland, Russia) 204 (29%) 195 (30%) 190 (23%) 

    Lima, Peru 4 (0.6%) 4 (0.6%) 0 (0%) 

    Massachusetts, USA 0 (0%) 0 (0%) 26 (3.2%) 

    Mexico City, Mexico 14 (2.0%) 16 (2.4%) 0 (0%) 

    Minnesota, USA 12 (1.7%) 13 (2.0%) 13 (1.6%) 

    New York, USA 12 (1.7%) 11 (1.7%) 13 (1.6%) 

    Nice, France 26 (3.7%) 44 (6.7%) 53 (6.5%) 

    Quebec, Canada 0 (0%) 0 (0%) 113 (14%) 

    Taiwan 218 (31%) 202 (31%) 184 (23%) 

    Toronto, Canada 71 (10%) 39 (5.9%) 68 (8.4%) 

    Valencia, Spain 8 (1.1%) 7 (1.1%) 5 (0.6%) 

Stage    

    I 407 (61%) 368 (59%) 496 (64%) 

    II 115 (17%) 113 (18%) 131 (17%) 

    III 108 (16%) 107 (17%) 120 (15%) 

    IV 38 (5.7%) 39 (6.2%) 30 (3.9%) 

    Unknown 33 34 34 

Histology Composite    

    Adenocarcinoma 621 (89%) 584 (88%) 695 (86%) 

    Adenosquamous carcinoma 12 (1.7%) 9 (1.4%) 11 (1.4%) 

    Carcinoid tumor 23 (3.3%) 23 (3.5%) 58 (7.2%) 

    Squamous cell carcinoma 36 (5.1%) 36 (5.4%) 34 (4.2%) 

    Other 9 (1.3%) 9 (1.4%) 13 (1.6%) 
1Median (Q1, Q3); n (%) 
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Table 2: Read Depth statistics per sequencing modality and sample type. 1157 
 1158 

 1159 
 1160 

Main Figure Legends 1161 

Figure 1: General overview of the pipeline and dataset. a) Count of samples per combinations 1162 
of sequencing platforms, by biospecimen type. b) Overview of the analytical pipeline used for 1163 
this study. Bracken abundance estimation was used only with WGS (combining this study and 1164 
Zhang et al. 2021) and 16S. After decontamination, read counts above the genus level were 1165 
recursively adjusted (Methods). Created in BioRender. McElderry, J. (2025) https:// 1166 
BioRender.com/8kkrqgu . c) Total reads assigned to different domains and to the human 1167 
genome (WGS n= 1176; RNA-seq n=1203, 16S n=1264). d) log10 bacterial reads per million, 1168 
including human and other sequences, by sequencing modality and tissue type (WGS n= 811 1169 
tumors, 365 normal lung, 447 blood samples; RNA-seq n= 661 tumors, 542 normal lung 1170 
samples; 16S n=701 tumors, 563 normal lung samples). e) log10 absolute bacterial read counts 1171 
by sequencing modality and tissue type (WGS n= 811 tumors, 365 normal lung, 447 blood 1172 
samples; RNA-seq n= 661 tumors, 542 normal lung samples; 16S n=701 tumors, 563 normal 1173 
lung samples). f) Comparison of log10 per-million genus-level bacterial reads in the WGS dataset 1174 
compared to WGS from other studies. Boxplot centers, upper and lower bounds, and whiskers 1175 
represent median, upper and lower quartiles, and quartiles +/- 1.5 inter-quartile range, 1176 
respectively. WGS = whole genome sequencing; Rna-seq = RNA sequencing; 16S = 16S rRNA 1177 
gene sequencing. 1178 
 1179 

     Range 

Tumor-Normal Status n mean median Standard Deviation Low High 

16S 

Tumor 701 66,917 61,644 31,947 4,024 199,104 

Normal 563 57,628 58,308 20,127 5,166 194,827 

RNAseq 

Tumor 661 129,635,580 127,478,501 38,900,833 22,429,409 610,965,375 

Normal 542 130,148,355 126,346,728 37,999,097 20,866,863 471,422,274 

WGS 

Blood 447 942,996,840 908,564,834 189,070,286 680,579,372 1,814,647,436 

Tumor 811 2,348,912,898 2,292,893,294 330,902,893 727,878,974 4,382,840,738 

Normal 365 941,838,237 925,300,124 166,991,678 659,749,314 2,299,531,502 
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Figure 2: Compositional overview of each dataset after decontamination. a) Overview of the 1180 
phylum-level relative abundances for all samples in this dataset, ordered by abundance of 1181 
Proteobacteria. b) Mean phylum-level and c) genus-level relative abundances by sequencing 1182 
platform and tumor-normal status, including only samples which were sequenced across all 1183 
three sequencing modalities. d) Rarefaction curve showing the relationship between read 1184 
depth and number of unique bacterial genera observed in 16S, RNA-seq, and WGS datasets 1185 
across all tissue types. WGS = whole genome sequencing; RNA-seq = RNA sequencing; 16S = 16S 1186 
rRNA gene sequencing. 1187 
 1188 

Figure 3: Tumor-normal, clinical, and demographic associations with the microbiome. a) 1189 
ANCOM-BC differential abundance results with Holm method for multiple testing correction, 1190 
and b) comparison of Shannon alpha diversity between paired tumor and normal samples using 1191 
genus-level 16S data (n=385 tumor-normal pairs) using a two-sided Wilcoxon test. Boxplot 1192 
centers, upper and lower bounds, and whiskers represent median, upper and lower quartiles, 1193 
and quartiles +/- 1.5 inter-quartile range, respectively. c) ANCOM-BC differential abundance 1194 
results with Holm method multiple testing correction, and d) comparison of Shannon alpha 1195 
diversity between paired tumor and normal samples using genus-level RNA-seq data (n=525 1196 
tumor-normal pairs) using a two-sided Wilcoxon test. Boxplot centers, upper and lower bounds, 1197 
and whiskers represent median, upper and lower quartiles, and quartiles +/- 1.5 inter-quartile 1198 
range, respectively. e) Genus-level alpha diversity and richness in tumors associated via 1199 
generalized linear models with clinical features, adjusted for study site. RNA-seq (n=661), 16S 1200 
(n=572), and meta-analyzed WGS (n=704) samples were rarefied to 500, 250, and 100 bacterial 1201 
reads respectively. Stage I tumors, adenocarcinoma histology, and European (EUR) ancestry 1202 
serve as references. Unadjusted p-values are shown; all tests are non-significant (FDR>0.05) 1203 
after multiple testing correction. Points represent regression coefficient, error bars signify 1204 
standard error. WGS = whole genome sequencing; RNA-seq = RNA sequencing; 16S = 16S rRNA 1205 
gene sequencing; AMR=American; EAS=East Asian. 1206 
 1207 
Figure 4: Survival associations with individual bacterial taxa. a) Cox proportional hazard model 1208 
of ten-year survival with RNA-seq bacterial relative abundances including genera with minimum 1209 
50 reads in 10% of samples, b) 16S bacterial relative abundances including genera with 1210 
minimum 10 reads in 10% of samples, and c) meta-analyzed WGS bacterial relative abundances 1211 
including genera with minimum 10 reads in 10% of samples. All analyses were stratified by 1212 
study site, age at diagnosis (age>65 or ≤65), and stage (stage I or stages II-IV), and further 1213 
adjusted by histology and age in ten year categories. All associations are not significant 1214 
(FDR>0.05) after multiple testing correction. Points represent log Cox hazard ratio, error bars 1215 
signify standard error. RNA-seq n = 587 tumor samples, 482 normal samples; 16S n = 488 tumor 1216 
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samples, 395 normal samples; WGS n = 647 tumor samples, 375 blood samples. WGS = whole 1217 
genome sequencing; Rna-seq = RNA sequencing; 16S = 16S rRNA gene sequencing. 1218 
 1219 
 1220 
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